IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i1p521-d1023201.html
   My bibliography  Save this article

Investigation on the Properties of Flame-Retardant Phase Change Material and Its Application in Battery Thermal Management

Author

Listed:
  • Yilin Cui

    (School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
    School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Yin Chen

    (School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
    School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Luyao Zhao

    (School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
    School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Fang Zhu

    (School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
    School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Lixia Li

    (School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
    School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Qinghong Kong

    (School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
    School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Mingyi Chen

    (School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
    School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

The thermal safety problem of lithium-ion batteries (LIB) in use requires an excellent thermal management system to preserve it. In the paper, an expansion flame-retardant composed of APP and CFA and kaolinite is used to enhance the flame-retardant property of phase change materials (PCM). The performances of PCM and their property in the thermal management of LIB were studied. The results indicate that the kaolinite can improve the long-term thermostability of PCM. The addition of flame retardant can make the flame-retardant property of PCM reach V0 level. The synergistic action of expansion flame-retardant and kaolinite can increase the residual carbon and enhance the thermal reliability of flame-retardant PCM (RPCM). The RPCM has an obvious cooling effect on the surface temperature of the battery. The RPCM can reduce the maximum temperature of the cell to 37.4 °C at 3 C, which is 12 °C lower than pure PA. The peak temperature of the battery pack at 3 C is also reduced to 50.28 °C by the flame-retardant PCM, and the temperature difference is kept within 5 °C.

Suggested Citation

  • Yilin Cui & Yin Chen & Luyao Zhao & Fang Zhu & Lixia Li & Qinghong Kong & Mingyi Chen, 2023. "Investigation on the Properties of Flame-Retardant Phase Change Material and Its Application in Battery Thermal Management," Energies, MDPI, vol. 16(1), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:521-:d:1023201
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/521/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/521/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xinghui & Li, Zhao & Luo, Lingai & Fan, Yilin & Du, Zhengyu, 2022. "A review on thermal management of lithium-ion batteries for electric vehicles," Energy, Elsevier, vol. 238(PA).
    2. Li, Liping & Wang, Gang & Guo, Chuigen, 2016. "Influence of intumescent flame retardant on thermal and flame retardancy of eutectic mixed paraffin/polypropylene form-stable phase change materials," Applied Energy, Elsevier, vol. 162(C), pages 428-434.
    3. Weng, Jingwen & Xiao, Changren & Ouyang, Dongxu & Yang, Xiaoqing & Chen, Mingyi & Zhang, Guoqing & Yuen, Richard Kwok Kit & Wang, Jian, 2022. "Mitigation effects on thermal runaway propagation of structure-enhanced phase change material modules with flame retardant additives," Energy, Elsevier, vol. 239(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).
    2. Lipeng Xu & Chongwang Tian & Chunjiang Bao & Jinsheng Zhao & Xuning Leng, 2023. "Improving the Electrochemical Performance of Core–Shell LiNi 0.8 Co 0.1 Mn 0.1 O 2 Cathode Materials Using Environmentally Friendly Phase Structure Control Process," Energies, MDPI, vol. 16(10), pages 1-17, May.
    3. Anne Christine Lusk & Xin Li & Qiming Liu, 2023. "If the Government Pays for Full Home-Charger Installation, Would Affordable-Housing and Middle-Income Residents Buy Electric Vehicles?," Sustainability, MDPI, vol. 15(5), pages 1-26, March.
    4. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    5. Deng, Jian & Huang, Qiqiu & Li, Xinxi & Zhang, Guoqing & Li, Canbing & Li, Songbo, 2024. "Influence mechanism of battery thermal management with flexible flame retardant composite phase change materials by temperature aging," Renewable Energy, Elsevier, vol. 222(C).
    6. Maryam Ghalkhani & Saeid Habibi, 2022. "Review of the Li-Ion Battery, Thermal Management, and AI-Based Battery Management System for EV Application," Energies, MDPI, vol. 16(1), pages 1-16, December.
    7. Monika Gandhi & Ashok Kumar & Rajasekar Elangovan & Chandan Swaroop Meena & Kishor S. Kulkarni & Anuj Kumar & Garima Bhanot & Nishant R. Kapoor, 2020. "A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    8. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Li, Li & Ling, Lei & Xie, Yajun & Zhou, Wencai & Wang, Tianbo & Zhang, Lanchun & Bei, Shaoyi & Zheng, Keqing & Xu, Qiang, 2023. "Comparative study of thermal management systems with different cooling structures for cylindrical battery modules: Side-cooling vs. terminal-cooling," Energy, Elsevier, vol. 274(C).
    10. Hong Shi & Mengmeng Cheng & Yi Feng & Chenghui Qiu & Caiyue Song & Nenglin Yuan & Chuanzhi Kang & Kaijie Yang & Jie Yuan & Yonghao Li, 2023. "Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations," Energies, MDPI, vol. 16(2), pages 1-23, January.
    11. Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).
    12. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Wang, Anci & Yin, Xiang & Xin, Zhicheng & Cao, Feng & Wu, Zan & Sundén, Bengt & Xiao, Di, 2023. "Performance optimization of electric vehicle battery thermal management based on the transcritical CO2 system," Energy, Elsevier, vol. 266(C).
    14. Zhang, Furen & Lu, Fu & Liang, Beibei & Zhu, Yilin & Gou, Huan & Xiao, Kang & He, Yanxiao, 2023. "Thermal performance analysis of a new type of branch-fin enhanced battery thermal management PCM module," Renewable Energy, Elsevier, vol. 206(C), pages 1049-1063.
    15. Shan, Shuai & Li, Li & Xu, Qiang & Ling, Lei & Xie, Yajun & Wang, Hongkang & Zheng, Keqing & Zhang, Lanchun & Bei, Shaoyi, 2023. "Numerical investigation of a compact and lightweight thermal management system with axially mounted cooling tubes for cylindrical lithium-ion battery module," Energy, Elsevier, vol. 274(C).
    16. Caulfield, Brian & Furszyfer, Dylan & Stefaniec, Agnieszka & Foley, Aoife, 2022. "Measuring the equity impacts of government subsidies for electric vehicles," Energy, Elsevier, vol. 248(C).
    17. Jia, Zhuangzhuang & Huang, Zonghou & Zhai, Hongju & Qin, Pen & Zhang, Yue & Li, Yawen & Wang, Qingsong, 2022. "Experimental investigation on thermal runaway propagation of 18,650 lithium-ion battery modules with two cathode materials at low pressure," Energy, Elsevier, vol. 251(C).
    18. Rajeshkumar Ramraj & Ehsan Pashajavid & Sanath Alahakoon & Shantha Jayasinghe, 2023. "Quality of Service and Associated Communication Infrastructure for Electric Vehicles," Energies, MDPI, vol. 16(20), pages 1-28, October.
    19. Huang, Yi-Huan & Cheng, Yi-Xin & Zhao, Rui & Cheng, Wen-Long, 2020. "A high heat storage capacity form-stable composite phase change material with enhanced flame retardancy," Applied Energy, Elsevier, vol. 262(C).
    20. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:521-:d:1023201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.