IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v206y2023icp1049-1063.html
   My bibliography  Save this article

Thermal performance analysis of a new type of branch-fin enhanced battery thermal management PCM module

Author

Listed:
  • Zhang, Furen
  • Lu, Fu
  • Liang, Beibei
  • Zhu, Yilin
  • Gou, Huan
  • Xiao, Kang
  • He, Yanxiao

Abstract

To solve the problem of the lightweight design of metal fins and strengthen the heat transfer between phase change material (PCM) and lithium batteries, the synergistic design of fins and phase change material-battery thermal management system (PCM-BTMS) is particularly important. In this paper, 9 new branch fin design schemes were proposed based on the conventional straight fin. The reliability of the computational fluid dynamics model was verified through the heat transfer experiments at different discharge rates. Firstly, the thermal performances of 9 new fins and the conventional straight fin under 5C discharge rate were compared and analyzed, and the optimal model was selected. Secondly, the effects of transverse fin coverage area, number, arc length, thickness, and arc length of inner and outer arc fins on the thermal performance were analyzed considering the effects of different heat transfer coefficients. The results show that the preferred fins have less effect on the heat transfer coefficient enhanced thermal performance compared with the conventional fins; the average cell temperature is reduced by 3.14 K and 3.92 K respectively by increasing the fin coverage area and the number of transverse fins to increase the contact area with PCM to enhance heat dissipation; the average cell temperature changes more significantly with the inner arc fins, and the cell temperature of Case H6 was reduced by 7.2 K; while the transverse fin arc length extension reduced the thermal performance of the system in high temperature cases. The volume of system remained the same, and the thickness of the transverse fins decreased the heat storage capacity of the system when the thickness of the transverse fins was larger. The optimal fins could keep the average cell temperature within 318.15 K. The heat transfer capability was improved by 14.98%, the operating time was extended by 131.5%, and the system weight was reduced by 10.28%.

Suggested Citation

  • Zhang, Furen & Lu, Fu & Liang, Beibei & Zhu, Yilin & Gou, Huan & Xiao, Kang & He, Yanxiao, 2023. "Thermal performance analysis of a new type of branch-fin enhanced battery thermal management PCM module," Renewable Energy, Elsevier, vol. 206(C), pages 1049-1063.
  • Handle: RePEc:eee:renene:v:206:y:2023:i:c:p:1049-1063
    DOI: 10.1016/j.renene.2023.02.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123002343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.02.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coman, Paul T. & Darcy, Eric C. & Veje, Christian T. & White, Ralph E., 2017. "Numerical analysis of heat propagation in a battery pack using a novel technology for triggering thermal runaway," Applied Energy, Elsevier, vol. 203(C), pages 189-200.
    2. Samimi, Fereshteh & Babapoor, Aziz & Azizi, Mohammadmehdi & Karimi, Gholamreza, 2016. "Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers," Energy, Elsevier, vol. 96(C), pages 355-371.
    3. Zhang, Xinghui & Li, Zhao & Luo, Lingai & Fan, Yilin & Du, Zhengyu, 2022. "A review on thermal management of lithium-ion batteries for electric vehicles," Energy, Elsevier, vol. 238(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Heng & Chang, Yunwei & Chen, Yuanyuan & Guo, Jiang rong & Zou, Deqiu, 2024. "Experimental research on pipeless power battery cooling system using shape-stabilized phase change materials (SSPCM) coupled with seawater," Energy, Elsevier, vol. 286(C).
    2. Zheng, Aodi & Gao, Huan & Jia, Xiongjie & Cai, Yuhao & Yang, Xiaohu & Zhu, Qiang & Jiang, Haoran, 2024. "Deep learning-assisted design for battery liquid cooling plate with bionic leaf structure considering non-uniform heat generation," Applied Energy, Elsevier, vol. 373(C).
    3. An, Zhiguo & Liu, Huaixi & Gao, Weilin & Zhang, Jianping, 2024. "A triple-hybrid battery thermal management system with drop-shaped fin channels for improving weather tolerance," Energy, Elsevier, vol. 307(C).
    4. Luo, Ding & Wu, Zihao & Jiang, Li & Yan, Yuying & Chen, Wei-Hsin & Cao, Jin & Cao, Bingyang, 2024. "Realizing rapid cooling and latent heat recovery in the thermoelectric-based battery thermal management system at high temperatures," Applied Energy, Elsevier, vol. 370(C).
    5. Chen-Lung Wang & Jik Chang Leong, 2024. "Analysis of Thermal Management Strategies for 21700 Lithium-Ion Batteries Incorporating Phase Change Materials and Porous Copper Foam with Different Battery Orientations," Energies, MDPI, vol. 17(7), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).
    2. Wenzhe Li & Youhang Zhou & Haonan Zhang & Xuan Tang, 2023. "A Review on Battery Thermal Management for New Energy Vehicles," Energies, MDPI, vol. 16(13), pages 1-20, June.
    3. Lipeng Xu & Chongwang Tian & Chunjiang Bao & Jinsheng Zhao & Xuning Leng, 2023. "Improving the Electrochemical Performance of Core–Shell LiNi 0.8 Co 0.1 Mn 0.1 O 2 Cathode Materials Using Environmentally Friendly Phase Structure Control Process," Energies, MDPI, vol. 16(10), pages 1-17, May.
    4. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    6. E, Jiaqiang & Xiao, Hanxu & Tian, Sicheng & Huang, Yuxin, 2024. "A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion," Renewable Energy, Elsevier, vol. 229(C).
    7. Zhang, Yue & Song, Laifeng & Tian, Jiamin & Mei, Wenxin & Jiang, Lihua & Sun, Jinhua & Wang, Qingsong, 2024. "Modeling the propagation of internal thermal runaway in lithium-ion battery," Applied Energy, Elsevier, vol. 362(C).
    8. Rahimi, Elnaz & Babapoor, Aziz & Moradi, Gholamreza & Kalantari, Saba & Monazzam Esmaeelpour, Mohammadreza, 2024. "Personal cooling garments and phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    9. Li, Li & Ling, Lei & Xie, Yajun & Zhou, Wencai & Wang, Tianbo & Zhang, Lanchun & Bei, Shaoyi & Zheng, Keqing & Xu, Qiang, 2023. "Comparative study of thermal management systems with different cooling structures for cylindrical battery modules: Side-cooling vs. terminal-cooling," Energy, Elsevier, vol. 274(C).
    10. Hong Shi & Mengmeng Cheng & Yi Feng & Chenghui Qiu & Caiyue Song & Nenglin Yuan & Chuanzhi Kang & Kaijie Yang & Jie Yuan & Yonghao Li, 2023. "Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations," Energies, MDPI, vol. 16(2), pages 1-23, January.
    11. Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).
    12. Wang, Anci & Yin, Xiang & Xin, Zhicheng & Cao, Feng & Wu, Zan & Sundén, Bengt & Xiao, Di, 2023. "Performance optimization of electric vehicle battery thermal management based on the transcritical CO2 system," Energy, Elsevier, vol. 266(C).
    13. Shan, Shuai & Li, Li & Xu, Qiang & Ling, Lei & Xie, Yajun & Wang, Hongkang & Zheng, Keqing & Zhang, Lanchun & Bei, Shaoyi, 2023. "Numerical investigation of a compact and lightweight thermal management system with axially mounted cooling tubes for cylindrical lithium-ion battery module," Energy, Elsevier, vol. 274(C).
    14. Jun Wang & Lin Ruan & Ruiwei Li, 2022. "Parametric Investigation on the Electrical-Thermal Performance of Battery Modules with a Pumped Two-Phase Cooling System," Energies, MDPI, vol. 15(21), pages 1-18, October.
    15. Mahesh Suresh Patil & Satyam Panchal & Namwon Kim & Moo-Yeon Lee, 2018. "Cooling Performance Characteristics of 20 Ah Lithium-Ion Pouch Cell with Cold Plates along Both Surfaces," Energies, MDPI, vol. 11(10), pages 1-19, September.
    16. Kai Chen & Ligong Yang & Yiming Chen & Bingheng Wu & Mengxuan Song, 2024. "Efficient Design of Battery Thermal Management Systems for Improving Cooling Performance and Reducing Pressure Drop," Energies, MDPI, vol. 17(10), pages 1-14, May.
    17. Caulfield, Brian & Furszyfer, Dylan & Stefaniec, Agnieszka & Foley, Aoife, 2022. "Measuring the equity impacts of government subsidies for electric vehicles," Energy, Elsevier, vol. 248(C).
    18. Rajeshkumar Ramraj & Ehsan Pashajavid & Sanath Alahakoon & Shantha Jayasinghe, 2023. "Quality of Service and Associated Communication Infrastructure for Electric Vehicles," Energies, MDPI, vol. 16(20), pages 1-28, October.
    19. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Li, Min & Mu, Boyuan, 2019. "Effect of different dimensional carbon materials on the properties and application of phase change materials: A review," Applied Energy, Elsevier, vol. 242(C), pages 695-715.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:206:y:2023:i:c:p:1049-1063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.