IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35442-8.html
   My bibliography  Save this article

20%-efficient polycrystalline Cd(Se,Te) thin-film solar cells with compositional gradient near the front junction

Author

Listed:
  • Deng-Bing Li

    (University of Toledo)

  • Sandip S. Bista

    (University of Toledo)

  • Rasha A. Awni

    (University of Toledo)

  • Sabin Neupane

    (University of Toledo)

  • Abasi Abudulimu

    (University of Toledo)

  • Xiaoming Wang

    (University of Toledo)

  • Kamala K. Subedi

    (University of Toledo)

  • Manoj K. Jamarkattel

    (University of Toledo)

  • Adam B. Phillips

    (University of Toledo)

  • Michael J. Heben

    (University of Toledo)

  • Jonathan D. Poplawsky

    (Oak Ridge National Laboratory)

  • David A. Cullen

    (Oak Ridge National Laboratory)

  • Randy J. Ellingson

    (University of Toledo)

  • Yanfa Yan

    (University of Toledo)

Abstract

Bandgap gradient is a proven approach for improving the open-circuit voltages (VOCs) in Cu(In,Ga)Se2 and Cu(Zn,Sn)Se2 thin-film solar cells, but has not been realized in Cd(Se,Te) thin-film solar cells, a leading thin-film solar cell technology in the photovoltaic market. Here, we demonstrate the realization of a bandgap gradient in Cd(Se,Te) thin-film solar cells by introducing a Cd(O,S,Se,Te) region with the same crystal structure of the absorber near the front junction. The formation of such a region is enabled by incorporating oxygenated CdS and CdSe layers. We show that the introduction of the bandgap gradient reduces the hole density in the front junction region and introduces a small spike in the band alignment between this and the absorber regions, effectively suppressing the nonradiative recombination therein and leading to improved VOCs in Cd(Se,Te) solar cells using commercial SnO2 buffers. A champion device achieves an efficiency of 20.03% with a VOC of 0.863 V.

Suggested Citation

  • Deng-Bing Li & Sandip S. Bista & Rasha A. Awni & Sabin Neupane & Abasi Abudulimu & Xiaoming Wang & Kamala K. Subedi & Manoj K. Jamarkattel & Adam B. Phillips & Michael J. Heben & Jonathan D. Poplawsky, 2022. "20%-efficient polycrystalline Cd(Se,Te) thin-film solar cells with compositional gradient near the front junction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35442-8
    DOI: 10.1038/s41467-022-35442-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35442-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35442-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arthur Onno & Carey Reich & Siming Li & Adam Danielson & William Weigand & Alexandra Bothwell & Sachit Grover & Jeff Bailey & Gang Xiong & Darius Kuciauskas & Walajabad Sampath & Zachary C. Holman, 2022. "Understanding what limits the voltage of polycrystalline CdSeTe solar cells," Nature Energy, Nature, vol. 7(5), pages 400-408, May.
    2. Yuancai Gong & Qiang Zhu & Bingyan Li & Shanshan Wang & Biwen Duan & Licheng Lou & Chunxu Xiang & Erin Jedlicka & Rajiv Giridharagopal & Yage Zhou & Qi Dai & Weibo Yan & Shiyou Chen & Qingbo Meng & Ha, 2022. "Elemental de-mixing-induced epitaxial kesterite/CdS interface enabling 13%-efficiency kesterite solar cells," Nature Energy, Nature, vol. 7(10), pages 966-977, October.
    3. Alessandro Romeo & Elisa Artegiani, 2021. "CdTe-Based Thin Film Solar Cells: Past, Present and Future," Energies, MDPI, vol. 14(6), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. R. Bowman & J. F. Leaver & K. Frohna & S. D. Stranks & G. Tagliabue & J. D. Major, 2024. "Spatially resolved photoluminescence analysis of the role of Se in CdSexTe1−x thin films," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Alessio Bosio & Gianluca Foti & Stefano Pasini & Donato Spoltore, 2023. "A Review on the Fundamental Properties of Sb 2 Se 3 -Based Thin Film Solar Cells," Energies, MDPI, vol. 16(19), pages 1-28, September.
    3. Artem Musiienko & Fengjiu Yang & Thomas William Gries & Chiara Frasca & Dennis Friedrich & Amran Al-Ashouri & Elifnaz Sağlamkaya & Felix Lang & Danny Kojda & Yi-Teng Huang & Valerio Stacchini & Robert, 2024. "Resolving electron and hole transport properties in semiconductor materials by constant light-induced magneto transport," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Jinlin Wang & Jiangjian Shi & Kang Yin & Fanqi Meng & Shanshan Wang & Licheng Lou & Jiazheng Zhou & Xiao Xu & Huijue Wu & Yanhong Luo & Dongmei Li & Shiyou Chen & Qingbo Meng, 2024. "Pd(II)/Pd(IV) redox shuttle to suppress vacancy defects at grain boundaries for efficient kesterite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    6. Małgorzata Jastrzębska, 2022. "Installation’s Conception in the Field of Renewable Energy Sources for the Needs of the Silesian Botanical Garden," Energies, MDPI, vol. 15(18), pages 1-28, September.
    7. McNulty, Brian A. & Jowitt, Simon M., 2022. "Byproduct critical metal supply and demand and implications for the energy transition: A case study of tellurium supply and CdTe PV demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Francisca Werlinger & Camilo Segura & Javier Martínez & Igor Osorio-Roman & Danilo Jara & Seog Joon Yoon & Andrés Fabián Gualdrón-Reyes, 2023. "Current Progress of Efficient Active Layers for Organic, Chalcogenide and Perovskite-Based Solar Cells: A Perspective," Energies, MDPI, vol. 16(16), pages 1-35, August.
    9. Sharmarke Hassan & Mahmoud Dhimish, 2022. "Review of Current State-of-the-Art Research on Photovoltaic Soiling, Anti-Reflective Coating, and Solar Roads Deployment Supported by a Pilot Experiment on a PV Road," Energies, MDPI, vol. 15(24), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35442-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.