IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6369-d1231625.html
   My bibliography  Save this article

Factors Influencing the Real-World Electricity Consumption of Electric Motorcycles

Author

Listed:
  • Triluck Kusalaphirom

    (Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Thaned Satiennam

    (Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Wichuda Satiennam

    (Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

Abstract

Currently, studies regarding the factors influencing the real-world electricity consumption of electric motorcycles are lacking. The objective of this study was to examine the factors influencing the real-world electricity consumption of electric motorcycles when driving along an uncongested road network. This study developed an onboard measurement device to collect on-road data, including instant speed data and electricity consumption, from the test electric motorcycle while it was driving on a real-world road. Overall, 105 participants (n = 105) drove the test motorcycle along the uncongested urban road network. Multiple linear regression analysis was applied to explore the effect of influencing variables on the electricity consumption of electric motorcycles. The analysis results revealed that the rider’s weight and average running speed positively influenced electricity consumption, whereas decelerating time negatively influenced electricity consumption. Noticeably, the rider’s weight affected electricity consumption more than other factors. The lightweighting of electric motorcycles was mainly recommended to lower electricity consumption. Subsequently, CO 2 emissions from electricity generation could be reduced.

Suggested Citation

  • Triluck Kusalaphirom & Thaned Satiennam & Wichuda Satiennam, 2023. "Factors Influencing the Real-World Electricity Consumption of Electric Motorcycles," Energies, MDPI, vol. 16(17), pages 1-11, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6369-:d:1231625
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6369/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6369/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saxena, Samveg & Gopal, Anand & Phadke, Amol, 2014. "Electrical consumption of two-, three- and four-wheel light-duty electric vehicles in India," Applied Energy, Elsevier, vol. 115(C), pages 582-590.
    2. Le-Trong Hieu & Nguyen Xuan Khoa & Ocktaeck Lim, 2021. "An Investigation on the Effects of Input Parameters on the Dynamic and Electric Consumption of Electric Motorcycles," Sustainability, MDPI, vol. 13(13), pages 1-13, June.
    3. Farzaneh, Alireza & Farjah, Ebrahim, 2018. "Analysis of Road Curvature’s Effects on Electric Motorcycle Energy Consumption," Energy, Elsevier, vol. 151(C), pages 160-166.
    4. Enjian Yao & Zhiqiang Yang & Yuanyuan Song & Ting Zuo, 2013. "Comparison of Electric Vehicle’s Energy Consumption Factors for Different Road Types," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    2. Bi, Huibo & Shang, Wen-Long & Chen, Yanyan & Wang, Kezhi & Yu, Qing & Sui, Yi, 2021. "GIS aided sustainable urban road management with a unifying queueing and neural network model," Applied Energy, Elsevier, vol. 291(C).
    3. Brady, John & O’Mahony, Margaret, 2016. "Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas," Applied Energy, Elsevier, vol. 177(C), pages 165-178.
    4. Saxena, Samveg & MacDonald, Jason & Moura, Scott, 2015. "Charging ahead on the transition to electric vehicles with standard 120V wall outlets," Applied Energy, Elsevier, vol. 157(C), pages 720-728.
    5. Stefan Bakker & Gary Haq & Karl Peet & Sudhir Gota & Nikola Medimorec & Alice Yiu & Gail Jennings & John Rogers, 2019. "Low-Carbon Quick Wins: Integrating Short-Term Sustainable Transport Options in Climate Policy in Low-Income Countries," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    6. Dwivedi, Pankaj Prasad & Sharma, Dilip Kumar, 2023. "Evaluation and ranking of battery electric vehicles by Shannon’s entropy and TOPSIS methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 457-474.
    7. Donateo, T. & Licci, F. & D’Elia, A. & Colangelo, G. & Laforgia, D. & Ciancarelli, F., 2015. "Evaluation of emissions of CO2 and air pollutants from electric vehicles in Italian cities," Applied Energy, Elsevier, vol. 157(C), pages 675-687.
    8. Polychronis Spanoudakis & Gerasimos Moschopoulos & Theodoros Stefanoulis & Nikolaos Sarantinoudis & Eftichios Papadokokolakis & Ioannis Ioannou & Savvas Piperidis & Lefteris Doitsidis & Nikolaos C. Ts, 2020. "Efficient Gear Ratio Selection of a Single-Speed Drivetrain for Improved Electric Vehicle Energy Consumption," Sustainability, MDPI, vol. 12(21), pages 1-19, November.
    9. Hossain, M.S. & Fang, Yan Ru & Ma, Teng & Huang, Chen & Peng, Wei & Urpelainen, Johannes & Hebbale, Chetan & Dai, Hancheng, 2023. "Narrowing fossil fuel consumption in the Indian road transport sector towards reaching carbon neutrality," Energy Policy, Elsevier, vol. 172(C).
    10. Li, Lifu & Liu, Qin, 2019. "Acceleration curve optimization for electric vehicle based on energy consumption and battery life," Energy, Elsevier, vol. 169(C), pages 1039-1053.
    11. Yang, Xiong & Zhuge, Chengxiang & Shao, Chunfu & Huang, Yuantan & Hayse Chiwing G. Tang, Justin & Sun, Mingdong & Wang, Pinxi & Wang, Shiqi, 2022. "Characterizing mobility patterns of private electric vehicle users with trajectory data," Applied Energy, Elsevier, vol. 321(C).
    12. Jarosław Mamala & Michał Śmieja & Krzysztof Prażnowski, 2021. "Analysis of the Total Unit Energy Consumption of a Car with a Hybrid Drive System in Real Operating Conditions," Energies, MDPI, vol. 14(13), pages 1-16, July.
    13. Le Trong Hieu & Ock Taeck Lim, 2023. "Effects of the Structure and Operating Parameters on the Performance of an Electric Scooter," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    14. Le-Trong Hieu & Nguyen Xuan Khoa & Ocktaeck Lim, 2021. "An Investigation on the Effects of Input Parameters on the Dynamic and Electric Consumption of Electric Motorcycles," Sustainability, MDPI, vol. 13(13), pages 1-13, June.
    15. Sarmad Zaman Rajper & Johan Albrecht, 2020. "Prospects of Electric Vehicles in the Developing Countries: A Literature Review," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    16. Aghajan-Eshkevari, Saleh & Ameli, Mohammad Taghi & Azad, Sasan, 2023. "Optimal routing and power management of electric vehicles in coupled power distribution and transportation systems," Applied Energy, Elsevier, vol. 341(C).
    17. Ecer, Fatih, 2021. "A consolidated MCDM framework for performance assessment of battery electric vehicles based on ranking strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Adriana Skuza & Emilia M. Szumska & Rafał Jurecki & Artur Pawelec, 2024. "Modeling the Impact of Traffic Parameters on Electric Vehicle Energy Consumption," Energies, MDPI, vol. 17(21), pages 1-19, October.
    19. Ioannou, Petros & Giuliano, Genevieve & Dessouky, Maged & Chen, Pengfei & Dexter, Sue, 2020. "Freight Load Balancing and Efficiencies in Alternative Fuel Freight Modes," Institute of Transportation Studies, Working Paper Series qt3ns4b894, Institute of Transportation Studies, UC Davis.
    20. Scarinci, Riccardo & Zanarini, Alessandro & Bierlaire, Michel, 2019. "Electrification of urban mobility: The case of catenary-free buses," Transport Policy, Elsevier, vol. 80(C), pages 39-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6369-:d:1231625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.