IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v226y2021ics0360544221006782.html
   My bibliography  Save this article

Impact of the acceleration intensity of a passenger car in a road test on energy consumption

Author

Listed:
  • Graba, M.
  • Mamala, J.
  • Bieniek, A.
  • Sroka, Z.

Abstract

The study analyses the effect of acceleration intensity on energy consumption and drive efficiency during a road test for a passenger vehicle. The acceleration was carried out from the assumed initial speed to the target speed determined appropriately for individual gear ratios. The tested speeds include values of 40-130 km/h. The intensity of the acceleration process resulted from the selected settings in the powertrain, such as the throttle opening with values from 30 to 100% and gearbox ratio selection. The tested mean accelerations covered the values from 0.2 to 1.5 m/s2. For individual sets of acceleration intensity, gearbox ratio and throttle opening, the unit energy consumption curves and the total efficiency courses of the powertrain system were determined. The average values of the powertrain efficiency obtained during the acceleration tests amounted to the range of 19.38–25.67%, while an increase in the average efficiency was found with a decrease in the gear ratio value and also the influence of the throttle opening was observed. The study assessed also the relationship between the average acceleration for the speed gaining phase and unit energy consumption, where the acceleration increment by 0.1 m/s2 causes a proportional increment in unit total energy consumption by about 0.15J·(kg·m)−1, regardless of the acceleration intensity.

Suggested Citation

  • Graba, M. & Mamala, J. & Bieniek, A. & Sroka, Z., 2021. "Impact of the acceleration intensity of a passenger car in a road test on energy consumption," Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006782
    DOI: 10.1016/j.energy.2021.120429
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221006782
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Xinmei & Zhang, Chuanpu & Hong, Guokai & Huang, Xueqi & Li, Lili, 2017. "Method for evaluating the real-world driving energy consumptions of electric vehicles," Energy, Elsevier, vol. 141(C), pages 1955-1968.
    2. Francesco Bottiglione & Stefano De Pinto & Giacomo Mantriota & Aldo Sorniotti, 2014. "Energy Consumption of a Battery Electric Vehicle with Infinitely Variable Transmission," Energies, MDPI, vol. 7(12), pages 1-21, December.
    3. Enjian Yao & Zhiqiang Yang & Yuanyuan Song & Ting Zuo, 2013. "Comparison of Electric Vehicle’s Energy Consumption Factors for Different Road Types," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amirgholy, Mahyar & Gao, H. Oliver, 2023. "Optimal traffic operation for maximum energy efficiency in signal-free urban networks: A macroscopic analytical approach," Applied Energy, Elsevier, vol. 329(C).
    2. Mariusz Graba & Jarosław Mamala & Andrzej Bieniek & Andrzej Augustynowicz & Krystian Czernek & Andżelika Krupińska & Sylwia Włodarczak & Marek Ochowiak, 2023. "Assessment of Energy Demand for PHEVs in Year-Round Operating Conditions," Energies, MDPI, vol. 16(14), pages 1-19, July.
    3. Wojciech Adamski & Krzysztof Brzozowski & Jacek Nowakowski & Tomasz Praszkiewicz & Tomasz Knefel, 2021. "Excess Fuel Consumption Due to Selection of a Lower Than Optimal Gear—Case Study Based on Data Obtained in Real Traffic Conditions," Energies, MDPI, vol. 14(23), pages 1-15, November.
    4. Jarosław Mamala & Michał Śmieja & Krzysztof Prażnowski, 2021. "Analysis of the Total Unit Energy Consumption of a Car with a Hybrid Drive System in Real Operating Conditions," Energies, MDPI, vol. 14(13), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polychronis Spanoudakis & Gerasimos Moschopoulos & Theodoros Stefanoulis & Nikolaos Sarantinoudis & Eftichios Papadokokolakis & Ioannis Ioannou & Savvas Piperidis & Lefteris Doitsidis & Nikolaos C. Ts, 2020. "Efficient Gear Ratio Selection of a Single-Speed Drivetrain for Improved Electric Vehicle Energy Consumption," Sustainability, MDPI, vol. 12(21), pages 1-19, November.
    2. Jarosław Mamala & Michał Śmieja & Krzysztof Prażnowski, 2021. "Analysis of the Total Unit Energy Consumption of a Car with a Hybrid Drive System in Real Operating Conditions," Energies, MDPI, vol. 14(13), pages 1-16, July.
    3. Ku, Donggyun & Choi, Minje & Yoo, Nakyoung & Shin, Seungheon & Lee, Seungjae, 2021. "A new algorithm for eco-friendly path guidance focused on electric vehicles," Energy, Elsevier, vol. 233(C).
    4. Stefano De Pinto & Pablo Camocardi & Christoforos Chatzikomis & Aldo Sorniotti & Francesco Bottiglione & Giacomo Mantriota & Pietro Perlo, 2020. "On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems," Energies, MDPI, vol. 13(13), pages 1-24, June.
    5. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    6. Ruan, Jiageng & Walker, Paul & Zhang, Nong, 2016. "A comparative study energy consumption and costs of battery electric vehicle transmissions," Applied Energy, Elsevier, vol. 165(C), pages 119-134.
    7. Ruan, Jiageng & Walker, Paul D. & Watterson, Peter A. & Zhang, Nong, 2016. "The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle," Applied Energy, Elsevier, vol. 183(C), pages 1240-1258.
    8. Polychronis Spanoudakis & Nikolaos C. Tsourveloudis & Lefteris Doitsidis & Emmanuel S. Karapidakis, 2019. "Experimental Research of Transmissions on Electric Vehicles’ Energy Consumption," Energies, MDPI, vol. 12(3), pages 1-15, January.
    9. Junhui Liu & Lei Feng & Zhiwu Li, 2017. "The Optimal Road Grade Design for Minimizing Ground Vehicle Energy Consumption," Energies, MDPI, vol. 10(5), pages 1-31, May.
    10. Triluck Kusalaphirom & Thaned Satiennam & Wichuda Satiennam, 2023. "Factors Influencing the Real-World Electricity Consumption of Electric Motorcycles," Energies, MDPI, vol. 16(17), pages 1-11, September.
    11. Yang, Xiong & Zhuge, Chengxiang & Shao, Chunfu & Huang, Yuantan & Hayse Chiwing G. Tang, Justin & Sun, Mingdong & Wang, Pinxi & Wang, Shiqi, 2022. "Characterizing mobility patterns of private electric vehicle users with trajectory data," Applied Energy, Elsevier, vol. 321(C).
    12. Aghajan-Eshkevari, Saleh & Ameli, Mohammad Taghi & Azad, Sasan, 2023. "Optimal routing and power management of electric vehicles in coupled power distribution and transportation systems," Applied Energy, Elsevier, vol. 341(C).
    13. Sun, Xilei & Fu, Jianqin, 2024. "Experiment investigation for interconnected effects of driving cycle and ambient temperature on bidirectional energy flows in an electric sport utility vehicle," Energy, Elsevier, vol. 300(C).
    14. Yuan, Hong & Ma, Minda & Zhou, Nan & Xie, Hui & Ma, Zhili & Xiang, Xiwang & Ma, Xin, 2024. "Battery electric vehicle charging in China: Energy demand and emissions trends in the 2020s," Applied Energy, Elsevier, vol. 365(C).
    15. Andong Yin & Shenchun Wu & Weihan Li & Jinfang Hu, 2019. "Analysis of Battery Reduction for an Improved Opportunistic Wireless-Charged Electric Bus," Energies, MDPI, vol. 12(15), pages 1-24, July.
    16. Ioannou, Petros & Giuliano, Genevieve & Dessouky, Maged & Chen, Pengfei & Dexter, Sue, 2020. "Freight Load Balancing and Efficiencies in Alternative Fuel Freight Modes," Institute of Transportation Studies, Working Paper Series qt3ns4b894, Institute of Transportation Studies, UC Davis.
    17. Scarinci, Riccardo & Zanarini, Alessandro & Bierlaire, Michel, 2019. "Electrification of urban mobility: The case of catenary-free buses," Transport Policy, Elsevier, vol. 80(C), pages 39-48.
    18. Fabio Vacca & Stefano De Pinto & Ahu Ece Hartavi Karci & Patrick Gruber & Fabio Viotto & Carlo Cavallino & Jacopo Rossi & Aldo Sorniotti, 2017. "On the Energy Efficiency of Dual Clutch Transmissions and Automated Manual Transmissions," Energies, MDPI, vol. 10(10), pages 1-22, October.
    19. Wang, Zihao & Ge, Hongxia & Cheng, Rongjun, 2020. "An extended macro model accounting for the driver’s timid and aggressive attributions and bounded rationality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    20. Al-Wreikat, Yazan & Serrano, Clara & Sodré, José Ricardo, 2021. "Driving behaviour and trip condition effects on the energy consumption of an electric vehicle under real-world driving," Applied Energy, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.