IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v151y2018icp160-166.html
   My bibliography  Save this article

Analysis of Road Curvature’s Effects on Electric Motorcycle Energy Consumption

Author

Listed:
  • Farzaneh, Alireza
  • Farjah, Ebrahim

Abstract

Concerns over carbon emissions have motivated motorcycle producers to explore the use of electric energy instead of gasoline. Due to battery capacity limitations, electric energy consumption should be optimized to extend the range of Electric Motorcycles (EMCs). Road curvature is an inevitable part of motorcycle travel, and this paper proposes a detailed electric motorcycle model to calculate electric energy consumption on both straight curved roads. Simulation results show that road curvature has a significant effect on energy consumption, so a Dynamic Programming (DP) optimization strategy was used to calculate EMC optimized speed over curved roads.

Suggested Citation

  • Farzaneh, Alireza & Farjah, Ebrahim, 2018. "Analysis of Road Curvature’s Effects on Electric Motorcycle Energy Consumption," Energy, Elsevier, vol. 151(C), pages 160-166.
  • Handle: RePEc:eee:energy:v:151:y:2018:i:c:p:160-166
    DOI: 10.1016/j.energy.2018.02.157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218303918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.02.157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xi, Jiaqi & Li, Mian & Xu, Min, 2014. "Optimal energy management strategy for battery powered electric vehicles," Applied Energy, Elsevier, vol. 134(C), pages 332-341.
    2. Amjad, Shaik & Rudramoorthy, R. & Neelakrishnan, S. & Sri Raja Varman, K. & Arjunan, T.V., 2011. "Evaluation of energy requirements for all-electric range of plug-in hybrid electric two-wheeler," Energy, Elsevier, vol. 36(3), pages 1623-1629.
    3. Tie, Siang Fui & Tan, Chee Wei, 2013. "A review of energy sources and energy management system in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 82-102.
    4. Khayyam, Hamid & Bab-Hadiashar, Alireza, 2014. "Adaptive intelligent energy management system of plug-in hybrid electric vehicle," Energy, Elsevier, vol. 69(C), pages 319-335.
    5. Chen, Bo-Chiuan & Wu, Yuh-Yih & Tsai, Hsien-Chi, 2014. "Design and analysis of power management strategy for range extended electric vehicle using dynamic programming," Applied Energy, Elsevier, vol. 113(C), pages 1764-1774.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Triluck Kusalaphirom & Thaned Satiennam & Wichuda Satiennam, 2023. "Factors Influencing the Real-World Electricity Consumption of Electric Motorcycles," Energies, MDPI, vol. 16(17), pages 1-11, September.
    2. Le-Trong Hieu & Nguyen Xuan Khoa & Ocktaeck Lim, 2021. "An Investigation on the Effects of Input Parameters on the Dynamic and Electric Consumption of Electric Motorcycles," Sustainability, MDPI, vol. 13(13), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qicheng Xue & Xin Zhang & Teng Teng & Jibao Zhang & Zhiyuan Feng & Qinyang Lv, 2020. "A Comprehensive Review on Classification, Energy Management Strategy, and Control Algorithm for Hybrid Electric Vehicles," Energies, MDPI, vol. 13(20), pages 1-30, October.
    2. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    3. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Truong, D.Q. & Marco, J. & Greenwood, D. & Harper, L. & Corrochano, D.G. & Yoon, J.I., 2018. "Challenges of micro/mild hybridisation for construction machinery and applicability in UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 301-320.
    5. Babu, Ajay & Ashok, S., 2015. "Improved parallel mild hybrids for urban roads," Applied Energy, Elsevier, vol. 144(C), pages 276-283.
    6. Chung, Cheng-Ta & Hung, Yi-Hsuan, 2015. "Performance and energy management of a novel full hybrid electric powertrain system," Energy, Elsevier, vol. 89(C), pages 626-636.
    7. Liu, Hui & Li, Xunming & Wang, Weida & Han, Lijin & Xiang, Changle, 2018. "Markov velocity predictor and radial basis function neural network-based real-time energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 152(C), pages 427-444.
    8. Chen, Zeyu & Xiong, Rui & Cao, Jiayi, 2016. "Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions," Energy, Elsevier, vol. 96(C), pages 197-208.
    9. Shen, Peihong & Zhao, Zhiguo & Zhan, Xiaowen & Li, Jingwei, 2017. "Particle swarm optimization of driving torque demand decision based on fuel economy for plug-in hybrid electric vehicle," Energy, Elsevier, vol. 123(C), pages 89-107.
    10. Tian, He & Li, Shengbo Eben & Wang, Xu & Huang, Yong & Tian, Guangyu, 2018. "Data-driven hierarchical control for online energy management of plug-in hybrid electric city bus," Energy, Elsevier, vol. 142(C), pages 55-67.
    11. Chen, Zheng & Xia, Bing & You, Chenwen & Mi, Chunting Chris, 2015. "A novel energy management method for series plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 145(C), pages 172-179.
    12. Peng, Jiankun & He, Hongwen & Xiong, Rui, 2017. "Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming," Applied Energy, Elsevier, vol. 185(P2), pages 1633-1643.
    13. Pengxiang Song & Yulong Lei & Yao Fu, 2020. "Multi-Objective Optimization and Matching of Power Source for PHEV Based on Genetic Algorithm," Energies, MDPI, vol. 13(5), pages 1-20, March.
    14. Chen, Xu & Li, Mince & Chen, Zonghai, 2023. "Meta rule-based energy management strategy for battery/supercapacitor hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    15. Zeyu Chen & Jiahuan Lu & Bo Liu & Nan Zhou & Shijie Li, 2020. "Optimal Energy Management of Plug-In Hybrid Electric Vehicles Concerning the Entire Lifespan of Lithium-Ion Batteries," Energies, MDPI, vol. 13(10), pages 1-15, May.
    16. Fan, Likang & Wang, Yufei & Wei, Hongqian & Zhang, Youtong & Zheng, Pengyu & Huang, Tianyi & Li, Wei, 2022. "A GA-based online real-time optimized energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 241(C).
    17. Hongwei Liu & Chantong Wang & Xin Zhao & Chong Guo, 2018. "An Adaptive-Equivalent Consumption Minimum Strategy for an Extended-Range Electric Bus Based on Target Driving Cycle Generation," Energies, MDPI, vol. 11(7), pages 1-26, July.
    18. Tengda Hu & Yunwu Li & Zhi Zhang & Ying Zhao & Dexiong Liu, 2021. "Energy Management Strategy of Hybrid Energy Storage System Based on Road Slope Information," Energies, MDPI, vol. 14(9), pages 1-18, April.
    19. Ku, Donggyun & Choi, Minje & Yoo, Nakyoung & Shin, Seungheon & Lee, Seungjae, 2021. "A new algorithm for eco-friendly path guidance focused on electric vehicles," Energy, Elsevier, vol. 233(C).
    20. Baresch, Martin & Moser, Simon, 2019. "Allocation of e-car charging: Assessing the utilization of charging infrastructures by location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 388-395.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:151:y:2018:i:c:p:160-166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.