IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6141-d1223504.html
   My bibliography  Save this article

Li 3 PO 4 -Coated Graphite Anode for Thermo-Electrochemically Stable Lithium-Ion Batteries

Author

Listed:
  • Jong Hun Sung

    (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
    Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea)

  • Taewan Kim

    (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea)

  • Soljin Kim

    (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea)

  • Fuead Hasan

    (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
    Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA)

  • Sangram Keshari Mohanty

    (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea)

  • Madhusudana Koratikere Srinivasa

    (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea)

  • Sri Charan Reddy

    (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea)

  • Hyun Deog Yoo

    (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea)

Abstract

Extensive research on electrode materials has been sparked by the rising demand for high-energy-density rechargeable lithium-ion batteries (LIBs). Graphite is a crucial component of LIB anodes, as more than 90% of the commercialized cathodes are coupled with the graphite anode. For the advanced graphite anode, the fast charge–discharge electrochemical performance and the thermal stability need to be further improved in order to meet the growing demand. Herein, a graphite anode material’s thermo-electrochemical stability was improved by the surface coating of lithium phosphate (Li 3 PO 4 ; LPO). The graphite anode with a well-dispersed LPO-coating layer (graphite@LPO) demonstrated significant improvement in the cycle and rate performances. The graphite@LPO sample showed a capacity retention of 67.8% after 300 cycles at 60 °C, whereas the pristine graphite anode failed after 225 cycles, confirming the ameliorated thermo-electrochemical stability and cyclability by LPO coating. The improved thermo-electrochemical stability of the graphite@LPO anode was validated by the full-cell tests as well. The performance enhancement by LPO-coating is due to the suppression of the growth of the surface film and charge-transfer resistances during the repeated cycling, as evidenced by the electrochemical impedance spectroscopy analysis.

Suggested Citation

  • Jong Hun Sung & Taewan Kim & Soljin Kim & Fuead Hasan & Sangram Keshari Mohanty & Madhusudana Koratikere Srinivasa & Sri Charan Reddy & Hyun Deog Yoo, 2023. "Li 3 PO 4 -Coated Graphite Anode for Thermo-Electrochemically Stable Lithium-Ion Batteries," Energies, MDPI, vol. 16(17), pages 1-11, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6141-:d:1223504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6141/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6141/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    2. Gert Berckmans & Maarten Messagie & Jelle Smekens & Noshin Omar & Lieselot Vanhaverbeke & Joeri Van Mierlo, 2017. "Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030," Energies, MDPI, vol. 10(9), pages 1-20, September.
    3. Jaguemont, J. & Boulon, L. & Dubé, Y., 2016. "A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures," Applied Energy, Elsevier, vol. 164(C), pages 99-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hangning Liu & Lin Wang & Yi Cao & Yingjun Ma & Shan Wang & Jie Wang & Haidong Liu, 2024. "Rational Design of Electrolyte Additives for Improved Solid Electrolyte Interphase Formation on Graphite Anodes: A Study of 1,3,6-Hexanetrinitrile," Energies, MDPI, vol. 17(13), pages 1-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.
    2. Nykvist, Björn & Sprei, Frances & Nilsson, Måns, 2019. "Assessing the progress toward lower priced long range battery electric vehicles," Energy Policy, Elsevier, vol. 124(C), pages 144-155.
    3. Lijun Zhang & Zhongqiang Mu & Xiangyu Gao, 2018. "Coupling Analysis and Performance Study of Commercial 18650 Lithium-Ion Batteries under Conditions of Temperature and Vibration," Energies, MDPI, vol. 11(10), pages 1-27, October.
    4. Zhang, Xinghui & Li, Zhao & Luo, Lingai & Fan, Yilin & Du, Zhengyu, 2022. "A review on thermal management of lithium-ion batteries for electric vehicles," Energy, Elsevier, vol. 238(PA).
    5. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    6. Marc Wentker & Matthew Greenwood & Jens Leker, 2019. "A Bottom-Up Approach to Lithium-Ion Battery Cost Modeling with a Focus on Cathode Active Materials," Energies, MDPI, vol. 12(3), pages 1-18, February.
    7. Wang, Bin & Wang, Shifeng & Tang, Yuanyuan & Tsang, Chi-Wing & Dai, Jinchuan & Leung, Michael K.H. & Lu, Xiao-Ying, 2019. "Micro/nanostructured MnCo2O4.5 anodes with high reversible capacity and excellent rate capability for next generation lithium-ion batteries," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    9. Thorne, Rebecca Jayne & Hovi, Inger Beate & Figenbaum, Erik & Pinchasik, Daniel Ruben & Amundsen, Astrid Helene & Hagman, Rolf, 2021. "Facilitating adoption of electric buses through policy: Learnings from a trial in Norway," Energy Policy, Elsevier, vol. 155(C).
    10. Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).
    11. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    12. Motoaki, Yutaka & Yi, Wenqi & Salisbury, Shawn, 2018. "Empirical analysis of electric vehicle fast charging under cold temperatures," Energy Policy, Elsevier, vol. 122(C), pages 162-168.
    13. Ragab El-Sehiemy & Mohamed A. Hamida & Ehab Elattar & Abdullah Shaheen & Ahmed Ginidi, 2022. "Nonlinear Dynamic Model for Parameter Estimation of Li-Ion Batteries Using Supply–Demand Algorithm," Energies, MDPI, vol. 15(13), pages 1-20, June.
    14. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    15. Ziheng Zhang & Maxim Avdeev & Huaican Chen & Wen Yin & Wang Hay Kan & Guang He, 2022. "Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    19. Qin, Yudi & Du, Jiuyu & Lu, Languang & Gao, Ming & Haase, Frank & Li, Jianqiu & Ouyang, Minggao, 2020. "A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life," Applied Energy, Elsevier, vol. 280(C).
    20. Yanjie Yi & Jingshun Zhuang & Chao Liu & Lirong Lei & Shuaiming He & Yi Hou, 2022. "Emerging Lignin-Based Materials in Electrochemical Energy Systems," Energies, MDPI, vol. 15(24), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6141-:d:1223504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.