IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5312-d1191679.html
   My bibliography  Save this article

Low Complexity Non-Linear Spectral Features and Wear State Models for Remaining Useful Life Estimation of Bearings

Author

Listed:
  • Eoghan T. Chelmiah

    (Faculty of Engineering, South East Technological University, Carlow Campus, Kilkenny Rd, R93 V960 Carlow, Ireland)

  • Violeta I. McLoone

    (Faculty of Engineering, South East Technological University, Carlow Campus, Kilkenny Rd, R93 V960 Carlow, Ireland)

  • Darren F. Kavanagh

    (Faculty of Engineering, South East Technological University, Carlow Campus, Kilkenny Rd, R93 V960 Carlow, Ireland)

Abstract

Improving the reliability and performance of electric and rotating machines is crucial to many industrial applications. This will lead to improved robustness, efficiency, and eco-sustainability, as well as mitigate significant health and safety concerns regarding sudden catastrophic failure modes. Bearing degradation is the most significant cause of machine failure and has been reported to cause up to 75% of low-voltage machine failures. This paper introduces a low complexity machine learning (ML) approach to estimate the remaining useful life (RUL) of rolling element bearings using real vibration signals. This work explores different ML recipes using novel feature engineering coupled with various k -Nearest Neighbour ( k -NN), and Support Vector Machines (SVM) kernel and weighting functions in order to optimise this RUL approach. Original non-linear wear state models and feature sets are investigated, the latter are derived from Short-time Fourier Transform (STFT) and Hilbert Marginal Spectrum (HMS). These feature sets incorporate one-third octave band filtering for low complexity multivariate feature subspace compression. Our proposed ML algorithm stage has employed two robust supervised ML approaches: weighted k -NN and SVM. Real vibration data were drawn from the Pronostia platform to test and validate this prognostic monitoring approach. The results clearly demonstrate the effectiveness of this approach, with classification accuracy results of up to 82.8% achieved. This work contributes to the field by introducing a robust and computationally inexpensive method for accurate monitoring of machine health using low-cost vibration-based sensing.

Suggested Citation

  • Eoghan T. Chelmiah & Violeta I. McLoone & Darren F. Kavanagh, 2023. "Low Complexity Non-Linear Spectral Features and Wear State Models for Remaining Useful Life Estimation of Bearings," Energies, MDPI, vol. 16(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5312-:d:1191679
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oscar Duque-Perez & Carlos Del Pozo-Gallego & Daniel Morinigo-Sotelo & Wagner Fontes Godoy, 2019. "Condition Monitoring of Bearing Faults Using the Stator Current and Shrinkage Methods," Energies, MDPI, vol. 12(17), pages 1-13, September.
    2. Wang, Yung-Hung & Yeh, Chien-Hung & Young, Hsu-Wen Vincent & Hu, Kun & Lo, Men-Tzung, 2014. "On the computational complexity of the empirical mode decomposition algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 159-167.
    3. Li-Ching Wu & Hsin-Hao Chen & Jorng-Tzong Horng & Chen Lin & Norden E Huang & Yu-Che Cheng & Kuang-Fu Cheng, 2010. "A Novel Preprocessing Method Using Hilbert Huang Transform for MALDI-TOF and SELDI-TOF Mass Spectrometry Data," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiang Gao & He-Sheng Tang & Jia-Wei Xiang & Yongteng Zhong, 2018. "A multi-sensor fault detection strategy for axial piston pump using the Walsh transform method," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.
    2. Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.
    3. Wei Sun & Ming Duan, 2019. "Analysis and Forecasting of the Carbon Price in China’s Regional Carbon Markets Based on Fast Ensemble Empirical Mode Decomposition, Phase Space Reconstruction, and an Improved Extreme Learning Machin," Energies, MDPI, vol. 12(2), pages 1-27, January.
    4. Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
    5. Piersanti, Giovanni & Piersanti, Mirko & Cicone, Antonio & Canofari, Paolo & Di Domizio, Marco, 2020. "An inquiry into the structure and dynamics of crude oil price using the fast iterative filtering algorithm," Energy Economics, Elsevier, vol. 92(C).
    6. Liu, Hui & Tian, Hongqi & Liang, Xifeng & Li, Yanfei, 2015. "New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks," Renewable Energy, Elsevier, vol. 83(C), pages 1066-1075.
    7. Dong, Shuoxuan & Zhou, Yang & Chen, Tianyi & Li, Shen & Gao, Qiantong & Ran, Bin, 2021. "An integrated Empirical Mode Decomposition and Butterworth filter based vehicle trajectory reconstruction method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    8. Xiao, Liye & Shao, Wei & Yu, Mengxia & Ma, Jing & Jin, Congjun, 2017. "Research and application of a combined model based on multi-objective optimization for electrical load forecasting," Energy, Elsevier, vol. 119(C), pages 1057-1074.
    9. Vincent Douchamps & Matteo Volo & Alessandro Torcini & Demian Battaglia & Romain Goutagny, 2024. "Gamma oscillatory complexity conveys behavioral information in hippocampal networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Yeh, Chien-Hung & Lo, Men-Tzung & Hu, Kun, 2016. "Spurious cross-frequency amplitude–amplitude coupling in nonstationary, nonlinear signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 143-150.
    11. Wei Sun & Mohan Liu & Yi Liang, 2015. "Wind Speed Forecasting Based on FEEMD and LSSVM Optimized by the Bat Algorithm," Energies, MDPI, vol. 8(7), pages 1-23, June.
    12. Wang, Yung-Hung & Young, Hsu-Wen Vincent & Lo, Men-Tzung, 2016. "The inner structure of empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1003-1017.
    13. Neeraj Bokde & Andrés Feijóo & Daniel Villanueva & Kishore Kulat, 2019. "A Review on Hybrid Empirical Mode Decomposition Models for Wind Speed and Wind Power Prediction," Energies, MDPI, vol. 12(2), pages 1-42, January.
    14. Wei Jiang & Yanhe Xu & Yahui Shan & Han Liu, 2018. "Degradation Tendency Measurement of Aircraft Engines Based on FEEMD Permutation Entropy and Regularized Extreme Learning Machine Using Multi-Sensor Data," Energies, MDPI, vol. 11(12), pages 1-18, November.
    15. Waseem El Sayed & Mostafa Abd El Geliel & Ahmed Lotfy, 2020. "Fault Diagnosis of PMSG Stator Inter-Turn Fault Using Extended Kalman Filter and Unscented Kalman Filter," Energies, MDPI, vol. 13(11), pages 1-24, June.
    16. Muszkats, J.P. & Muszkats, S.R. & Zitto, M.E. & Piotrkowski, R., 2024. "A statistical analysis of causal decomposition methods applied to Earth system time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    17. Wang, Yung-Hung & Yeh, Chien-Hung & Young, Hsu-Wen Vincent & Hu, Kun & Lo, Men-Tzung, 2014. "On the computational complexity of the empirical mode decomposition algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 159-167.
    18. Jujie Wang & Yanfeng Wang & Yaning Li, 2018. "A Novel Hybrid Strategy Using Three-Phase Feature Extraction and a Weighted Regularized Extreme Learning Machine for Multi-Step Ahead Wind Speed Prediction," Energies, MDPI, vol. 11(2), pages 1-33, February.
    19. Zhu, Ting & Wang, Wenbo & Yu, Min, 2023. "A novel hybrid scheme for remaining useful life prognostic based on secondary decomposition, BiGRU and error correction," Energy, Elsevier, vol. 276(C).
    20. Xuejiao Ma & Dandan Liu, 2016. "Comparative Study of Hybrid Models Based on a Series of Optimization Algorithms and Their Application in Energy System Forecasting," Energies, MDPI, vol. 9(8), pages 1-34, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5312-:d:1191679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.