IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3392-d263579.html
   My bibliography  Save this article

Condition Monitoring of Bearing Faults Using the Stator Current and Shrinkage Methods

Author

Listed:
  • Oscar Duque-Perez

    (Department of Electrical Engineering, University of Valladolid, 47011 Valladolid, Spain)

  • Carlos Del Pozo-Gallego

    (Department of Electrical Engineering, University of Valladolid, 47011 Valladolid, Spain)

  • Daniel Morinigo-Sotelo

    (Department of Electrical Engineering, University of Valladolid, 47011 Valladolid, Spain)

  • Wagner Fontes Godoy

    (Department of Electrical Engineering, Universidade Tecnologica Federal do Parana, Cornelio Procopio 86300-000, Brazil)

Abstract

Condition monitoring of bearings is an open issue. The use of the stator current to monitor induction motors has been validated as a very advantageous and practical way to detect several types of faults. Nevertheless, for bearing faults, the use of vibrations or sound generally offers better results in the accuracy of the detection, although with some disadvantages related to the sensors used for monitoring. To improve the performance of bearing monitoring, it is proposed to take advantage of more information available in the current spectra, beyond the usually employed, incorporating the amplitude of a significant number of sidebands around the first eleven harmonics, growing exponentially the number of fault signatures. This is especially interesting for inverter-fed motors. But, in turn, this leads to the problem of overfitting when applying a classifier to perform the fault diagnosis. To overcome this problem, and still exploit all the useful information available in the spectra, it is proposed to use shrinkage methods, which have been lately proposed in machine learning to solve the overfitting issue when the problem has many more variables than examples to classify. A case study with a motor is shown to prove the validity of the proposal.

Suggested Citation

  • Oscar Duque-Perez & Carlos Del Pozo-Gallego & Daniel Morinigo-Sotelo & Wagner Fontes Godoy, 2019. "Condition Monitoring of Bearing Faults Using the Stator Current and Shrinkage Methods," Energies, MDPI, vol. 12(17), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3392-:d:263579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3392/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3392/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Tibshirani, 2011. "Regression shrinkage and selection via the lasso: a retrospective," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 273-282, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomas A. Garcia-Calva & Daniel Morinigo-Sotelo & Oscar Duque-Perez & Arturo Garcia-Perez & Rene de J. Romero-Troncoso, 2020. "Time-Frequency Analysis Based on Minimum-Norm Spectral Estimation to Detect Induction Motor Faults," Energies, MDPI, vol. 13(16), pages 1-12, August.
    2. Waseem El Sayed & Mostafa Abd El Geliel & Ahmed Lotfy, 2020. "Fault Diagnosis of PMSG Stator Inter-Turn Fault Using Extended Kalman Filter and Unscented Kalman Filter," Energies, MDPI, vol. 13(11), pages 1-24, June.
    3. Eoghan T. Chelmiah & Violeta I. McLoone & Darren F. Kavanagh, 2023. "Low Complexity Non-Linear Spectral Features and Wear State Models for Remaining Useful Life Estimation of Bearings," Energies, MDPI, vol. 16(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    2. Alberti, Federica & Mantilla, César, 2020. "Provision of noxious facilities using a market-like mechanism: A simple implementation in the lab," Working papers 35, Red Investigadores de Economía.
    3. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    4. Sandro Radovanovic & Boris Delibasic & Milija Suknovic & Dajana Matovic, 2019. "Where will the next ski injury occur? A system for visual and predictive analytics of ski injuries," Operational Research, Springer, vol. 19(4), pages 973-992, December.
    5. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    6. Zhang, Guike & Gao, Zengan & Dong, June & Mei, Dexiang, 2023. "Machine learning approaches for constructing the national anti-money laundering index," Finance Research Letters, Elsevier, vol. 52(C).
    7. Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
    8. Dexin Chen & Meiting Fu & Liangjie Chi & Liyan Lin & Jiaxin Cheng & Weisong Xue & Chenyan Long & Wei Jiang & Xiaoyu Dong & Jian Sui & Dajia Lin & Jianping Lu & Shuangmu Zhuo & Side Liu & Guoxin Li & G, 2022. "Prognostic and predictive value of a pathomics signature in gastric cancer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2016. "The lasso for high dimensional regression with a possible change point," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 193-210, January.
    10. Hautsch, Nikolaus & Okhrin, Ostap & Ristig, Alexander, 2014. "Efficient iterative maximum likelihood estimation of high-parameterized time series models," SFB 649 Discussion Papers 2014-010, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
    12. repec:hum:wpaper:sfb649dp2014-010 is not listed on IDEAS
    13. Hettihewa, Samanthala & Saha, Shrabani & Zhang, Hanxiong, 2018. "Does an aging population influence stock markets? Evidence from New Zealand," Economic Modelling, Elsevier, vol. 75(C), pages 142-158.
    14. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    15. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.
    16. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    17. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    18. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2018. "On the determinants of bitcoin returns: A LASSO approach," Finance Research Letters, Elsevier, vol. 27(C), pages 235-240.
    19. Colin F. Camerer & Gideon Nave & Alec Smith, 2019. "Dynamic Unstructured Bargaining with Private Information: Theory, Experiment, and Outcome Prediction via Machine Learning," Management Science, INFORMS, vol. 65(4), pages 1867-1890, April.
    20. Yudhie Andriyana & Rinda Fitriani & Bertho Tantular & Neneng Sunengsih & Kurnia Wahyudi & I Gede Nyoman Mindra Jaya & Annisa Nur Falah, 2023. "Modeling the Cigarette Consumption of Poor Households Using Penalized Zero-Inflated Negative Binomial Regression with Minimax Concave Penalty," Mathematics, MDPI, vol. 11(14), pages 1-13, July.
    21. Shaobo Jin & Irini Moustaki & Fan Yang-Wallentin, 2018. "Approximated Penalized Maximum Likelihood for Exploratory Factor Analysis: An Orthogonal Case," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 628-649, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3392-:d:263579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.