A statistical analysis of causal decomposition methods applied to Earth system time series
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2024.129708
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cho, Jung-Hoon & Kim, Dong-Kyu & Kim, Eui-Jin, 2022. "Multi-scale causality analysis between COVID-19 cases and mobility level using ensemble empirical mode decomposition and causal decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
- Albert C. Yang & Chung-Kang Peng & Norden E. Huang, 2018. "Causal decomposition in the mutual causation system," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
- Mao, Xuegeng & Yang, Albert C. & Peng, Chung-Kang & Shang, Pengjian, 2020. "Analysis of economic growth fluctuations based on EEMD and causal decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
- Wang, Yung-Hung & Yeh, Chien-Hung & Young, Hsu-Wen Vincent & Hu, Kun & Lo, Men-Tzung, 2014. "On the computational complexity of the empirical mode decomposition algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 159-167.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cho, Jung-Hoon & Kim, Dong-Kyu & Kim, Eui-Jin, 2022. "Multi-scale causality analysis between COVID-19 cases and mobility level using ensemble empirical mode decomposition and causal decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
- Xu, Chao & Zhao, Xiaojun & Wang, Yanwen, 2022. "Causal decomposition on multiple time scales: Evidence from stock price-volume time series," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
- Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.
- Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
- Vincent Douchamps & Matteo Volo & Alessandro Torcini & Demian Battaglia & Romain Goutagny, 2024. "Gamma oscillatory complexity conveys behavioral information in hippocampal networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
- Yeh, Chien-Hung & Lo, Men-Tzung & Hu, Kun, 2016. "Spurious cross-frequency amplitude–amplitude coupling in nonstationary, nonlinear signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 143-150.
- Qiang Gao & He-Sheng Tang & Jia-Wei Xiang & Yongteng Zhong, 2018. "A multi-sensor fault detection strategy for axial piston pump using the Walsh transform method," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.
- Hongwei Lu & Tingting Li & Jianfei Lv & Aoxue Wang & Qiyou Luo & Mingjie Gao & Guojing Li, 2023. "The Fluctuation Characteristics and Periodic Patterns of Potato Prices in China," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
- Wang, Yung-Hung & Young, Hsu-Wen Vincent & Lo, Men-Tzung, 2016. "The inner structure of empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1003-1017.
- Hu, Yunchao & Lu, Guibin & Gao, Wenyu, 2022. "A study on China’s systemically important financial institutions based on multi-time scale causality networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
- Albert C. Yang & Chung-Kang Peng & Norden E. Huang, 2022. "Reply To: Comments on identifying causal relationships in nonlinear dynamical systems via empirical mode decomposition," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
- Mejri, Sami & Aloui, Chaker & Khan, Nasir, 2024. "The gold stock nexus: Assessing the causality dynamics based on advanced multiscale approaches," Resources Policy, Elsevier, vol. 88(C).
- Jujie Wang & Yanfeng Wang & Yaning Li, 2018. "A Novel Hybrid Strategy Using Three-Phase Feature Extraction and a Weighted Regularized Extreme Learning Machine for Multi-Step Ahead Wind Speed Prediction," Energies, MDPI, vol. 11(2), pages 1-33, February.
- Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing & Guo, Haixiang, 2017. "Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm," Applied Energy, Elsevier, vol. 190(C), pages 390-407.
- Liu, Hui & Tian, Hong-qi & Liang, Xi-feng & Li, Yan-fei, 2015. "Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks," Applied Energy, Elsevier, vol. 157(C), pages 183-194.
- Mao, Xuegeng & Yang, Albert C. & Peng, Chung-Kang & Shang, Pengjian, 2020. "Analysis of economic growth fluctuations based on EEMD and causal decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
- Young, Hsu-Wen Vincent & Hsu, Ke-Hsin & Pham, Van-Truong & Tran, Thi-Thao & Lo, Men-Tzung, 2017. "A new approach to sparse decomposition of nonstationary signals with multiple scale structures using self-consistent nonlinear waves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 1-10.
- Wei Sun & Ming Duan, 2019. "Analysis and Forecasting of the Carbon Price in China’s Regional Carbon Markets Based on Fast Ensemble Empirical Mode Decomposition, Phase Space Reconstruction, and an Improved Extreme Learning Machin," Energies, MDPI, vol. 12(2), pages 1-27, January.
- Piersanti, Giovanni & Piersanti, Mirko & Cicone, Antonio & Canofari, Paolo & Di Domizio, Marco, 2020. "An inquiry into the structure and dynamics of crude oil price using the fast iterative filtering algorithm," Energy Economics, Elsevier, vol. 92(C).
- Liu, Hui & Tian, Hongqi & Liang, Xifeng & Li, Yanfei, 2015. "New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks," Renewable Energy, Elsevier, vol. 83(C), pages 1066-1075.
More about this item
Keywords
Causal decomposition; Empirical mode decomposition; Statistical hypothesis testing; Earth system time series;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:641:y:2024:i:c:s0378437124002176. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.