IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i4p1550147718772531.html
   My bibliography  Save this article

A multi-sensor fault detection strategy for axial piston pump using the Walsh transform method

Author

Listed:
  • Qiang Gao
  • He-Sheng Tang
  • Jia-Wei Xiang
  • Yongteng Zhong

Abstract

The axial piston pump is a key component of the industrial hydraulic system, and the failure of pump can result in costly downtime. Efficient fault detection is very important for improving reliability and performance of axial piston pumps. Most existing diagnosis methods only use one kind of the discharge pressure, vibration, or acoustic signal. However, the hydraulic pump is a typical mechanism–hydraulics coupling system, all of the pressure, vibration, and acoustic signals contain useful information. Therefore, a novel multi-sensor fault detection strategy is developed to realize more effective diagnosis of axial piston pump. The presence of periodical impulses in these signals usually indicates the occurrence of faults in pump. Unfortunately, in the working condition, detecting the faults is a difficult job because they are rather weak and often interfered by heavy noise. Therefore, noise suppression is one of the most important procedures to detect the faults. In this article, a new denoising method based on the Walsh transform is proposed, and the innovation is that we use the median absolute deviation to estimate the noise threshold adaptively. Numerical simulations and experimental multi-sensor data collected from normal and faulty pumps are used to illustrate the feasibility of the proposed approach.

Suggested Citation

  • Qiang Gao & He-Sheng Tang & Jia-Wei Xiang & Yongteng Zhong, 2018. "A multi-sensor fault detection strategy for axial piston pump using the Walsh transform method," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:4:p:1550147718772531
    DOI: 10.1177/1550147718772531
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718772531
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718772531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yung-Hung & Yeh, Chien-Hung & Young, Hsu-Wen Vincent & Hu, Kun & Lo, Men-Tzung, 2014. "On the computational complexity of the empirical mode decomposition algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 159-167.
    2. Li-Ching Wu & Hsin-Hao Chen & Jorng-Tzong Horng & Chen Lin & Norden E Huang & Yu-Che Cheng & Kuang-Fu Cheng, 2010. "A Novel Preprocessing Method Using Hilbert Huang Transform for MALDI-TOF and SELDI-TOF Mass Spectrometry Data," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yun & Heidari, Ali Asghar & Ye, Xiaojia & Liang, Guoxi & Chen, Huiling & He, Caitou, 2021. "Boosting slime mould algorithm for parameter identification of photovoltaic models," Energy, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eoghan T. Chelmiah & Violeta I. McLoone & Darren F. Kavanagh, 2023. "Low Complexity Non-Linear Spectral Features and Wear State Models for Remaining Useful Life Estimation of Bearings," Energies, MDPI, vol. 16(14), pages 1-20, July.
    2. Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.
    3. Wei Sun & Ming Duan, 2019. "Analysis and Forecasting of the Carbon Price in China’s Regional Carbon Markets Based on Fast Ensemble Empirical Mode Decomposition, Phase Space Reconstruction, and an Improved Extreme Learning Machin," Energies, MDPI, vol. 12(2), pages 1-27, January.
    4. Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
    5. Piersanti, Giovanni & Piersanti, Mirko & Cicone, Antonio & Canofari, Paolo & Di Domizio, Marco, 2020. "An inquiry into the structure and dynamics of crude oil price using the fast iterative filtering algorithm," Energy Economics, Elsevier, vol. 92(C).
    6. Liu, Hui & Tian, Hongqi & Liang, Xifeng & Li, Yanfei, 2015. "New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks," Renewable Energy, Elsevier, vol. 83(C), pages 1066-1075.
    7. Dong, Shuoxuan & Zhou, Yang & Chen, Tianyi & Li, Shen & Gao, Qiantong & Ran, Bin, 2021. "An integrated Empirical Mode Decomposition and Butterworth filter based vehicle trajectory reconstruction method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    8. Xiao, Liye & Shao, Wei & Yu, Mengxia & Ma, Jing & Jin, Congjun, 2017. "Research and application of a combined model based on multi-objective optimization for electrical load forecasting," Energy, Elsevier, vol. 119(C), pages 1057-1074.
    9. Vincent Douchamps & Matteo Volo & Alessandro Torcini & Demian Battaglia & Romain Goutagny, 2024. "Gamma oscillatory complexity conveys behavioral information in hippocampal networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Yeh, Chien-Hung & Lo, Men-Tzung & Hu, Kun, 2016. "Spurious cross-frequency amplitude–amplitude coupling in nonstationary, nonlinear signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 143-150.
    11. Wei Sun & Mohan Liu & Yi Liang, 2015. "Wind Speed Forecasting Based on FEEMD and LSSVM Optimized by the Bat Algorithm," Energies, MDPI, vol. 8(7), pages 1-23, June.
    12. Wang, Yung-Hung & Young, Hsu-Wen Vincent & Lo, Men-Tzung, 2016. "The inner structure of empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1003-1017.
    13. Neeraj Bokde & Andrés Feijóo & Daniel Villanueva & Kishore Kulat, 2019. "A Review on Hybrid Empirical Mode Decomposition Models for Wind Speed and Wind Power Prediction," Energies, MDPI, vol. 12(2), pages 1-42, January.
    14. Wei Jiang & Yanhe Xu & Yahui Shan & Han Liu, 2018. "Degradation Tendency Measurement of Aircraft Engines Based on FEEMD Permutation Entropy and Regularized Extreme Learning Machine Using Multi-Sensor Data," Energies, MDPI, vol. 11(12), pages 1-18, November.
    15. Muszkats, J.P. & Muszkats, S.R. & Zitto, M.E. & Piotrkowski, R., 2024. "A statistical analysis of causal decomposition methods applied to Earth system time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    16. Wang, Yung-Hung & Yeh, Chien-Hung & Young, Hsu-Wen Vincent & Hu, Kun & Lo, Men-Tzung, 2014. "On the computational complexity of the empirical mode decomposition algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 159-167.
    17. Jujie Wang & Yanfeng Wang & Yaning Li, 2018. "A Novel Hybrid Strategy Using Three-Phase Feature Extraction and a Weighted Regularized Extreme Learning Machine for Multi-Step Ahead Wind Speed Prediction," Energies, MDPI, vol. 11(2), pages 1-33, February.
    18. Zhu, Ting & Wang, Wenbo & Yu, Min, 2023. "A novel hybrid scheme for remaining useful life prognostic based on secondary decomposition, BiGRU and error correction," Energy, Elsevier, vol. 276(C).
    19. Xuejiao Ma & Dandan Liu, 2016. "Comparative Study of Hybrid Models Based on a Series of Optimization Algorithms and Their Application in Energy System Forecasting," Energies, MDPI, vol. 9(8), pages 1-34, August.
    20. Hufang Yang & Zaiping Jiang & Haiyan Lu, 2017. "A Hybrid Wind Speed Forecasting System Based on a ‘Decomposition and Ensemble’ Strategy and Fuzzy Time Series," Energies, MDPI, vol. 10(9), pages 1-30, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:4:p:1550147718772531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.