IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0012493.html
   My bibliography  Save this article

A Novel Preprocessing Method Using Hilbert Huang Transform for MALDI-TOF and SELDI-TOF Mass Spectrometry Data

Author

Listed:
  • Li-Ching Wu
  • Hsin-Hao Chen
  • Jorng-Tzong Horng
  • Chen Lin
  • Norden E Huang
  • Yu-Che Cheng
  • Kuang-Fu Cheng

Abstract

Motivation: Mass spectrometry is a high throughput, fast, and accurate method of protein analysis. Using the peaks detected in spectra, we can compare a normal group with a disease group. However, the spectrum is complicated by scale shifting and is also full of noise. Such shifting makes the spectra non-stationary and need to align before comparison. Consequently, the preprocessing of the mass data plays an important role during the analysis process. Noises in mass spectrometry data come in lots of different aspects and frequencies. A powerful data preprocessing method is needed for removing large amount of noises in mass spectrometry data. Results: Hilbert-Huang Transformation is a non-stationary transformation used in signal processing. We provide a novel algorithm for preprocessing that can deal with MALDI and SELDI spectra. We use the Hilbert-Huang Transformation to decompose the spectrum and filter-out the very high frequencies and very low frequencies signal. We think the noise in mass spectrometry comes from many sources and some of the noises can be removed by analysis of signal frequence domain. Since the protein in the spectrum is expected to be a unique peak, its frequence domain should be in the middle part of frequence domain and will not be removed. The results show that HHT, when used for preprocessing, is generally better than other preprocessing methods. The approach not only is able to detect peaks successfully, but HHT has the advantage of denoising spectra efficiently, especially when the data is complex. The drawback of HHT is that this approach takes much longer for the processing than the wavlet and traditional methods. However, the processing time is still manageable and is worth the wait to obtain high quality data.

Suggested Citation

  • Li-Ching Wu & Hsin-Hao Chen & Jorng-Tzong Horng & Chen Lin & Norden E Huang & Yu-Che Cheng & Kuang-Fu Cheng, 2010. "A Novel Preprocessing Method Using Hilbert Huang Transform for MALDI-TOF and SELDI-TOF Mass Spectrometry Data," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-15, August.
  • Handle: RePEc:plo:pone00:0012493
    DOI: 10.1371/journal.pone.0012493
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0012493
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0012493&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0012493?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eoghan T. Chelmiah & Violeta I. McLoone & Darren F. Kavanagh, 2023. "Low Complexity Non-Linear Spectral Features and Wear State Models for Remaining Useful Life Estimation of Bearings," Energies, MDPI, vol. 16(14), pages 1-20, July.
    2. Wang, Yung-Hung & Yeh, Chien-Hung & Young, Hsu-Wen Vincent & Hu, Kun & Lo, Men-Tzung, 2014. "On the computational complexity of the empirical mode decomposition algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 159-167.
    3. Qiang Gao & He-Sheng Tang & Jia-Wei Xiang & Yongteng Zhong, 2018. "A multi-sensor fault detection strategy for axial piston pump using the Walsh transform method," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0012493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.