IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v462y2016icp1003-1017.html
   My bibliography  Save this article

The inner structure of empirical mode decomposition

Author

Listed:
  • Wang, Yung-Hung
  • Young, Hsu-Wen Vincent
  • Lo, Men-Tzung

Abstract

The empirical mode decomposition (EMD) is a nonlinear method that is truly adaptive with good localization property in the time domain for analyzing non-stationary complex data. The EMD has been proven useful in a wide range of applications. However, due to the nonlinear and complex nature of the sifting process, the most essential step of the EMD, a firm mathematical foundation or a transparent physical description are still lacked for EMD. Here, we embark on constructing a mathematical theory of the sifting operator. We first show that the sifting operator can be expressed as the data plus the sum of the responses to the impulses (multiplied by the data value) at the extrema. Such an expression of the sifting operator is then used to investigate the adaptive nature and the localizing effect of the EMD. Alternatively, the sifting operator can also be represented by a sifting matrix, which depends nonlinearly on the extrema distribution. Based on the eigen-decomposition of the sifting matrix, the transfer function of the sifting process is analyzed. Finally we answer what an intrinsic mode function (IMF) is from the wave perspective by exploring the physical basis of the IMFs.

Suggested Citation

  • Wang, Yung-Hung & Young, Hsu-Wen Vincent & Lo, Men-Tzung, 2016. "The inner structure of empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1003-1017.
  • Handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:1003-1017
    DOI: 10.1016/j.physa.2016.06.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116303879
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.06.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Kun & Peng, C.K. & Huang, Norden E. & Wu, Zhaohua & Lipsitz, Lewis A. & Cavallerano, Jerry & Novak, Vera, 2008. "Altered phase interactions between spontaneous blood pressure and flow fluctuations in type 2 diabetes mellitus: Nonlinear assessment of cerebral autoregulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(10), pages 2279-2292.
    2. Amir Bashan & Ronny Bartsch & Jan W. Kantelhardt & Shlomo Havlin, 2008. "Comparison of detrending methods for fluctuation analysis," Papers 0804.4081, arXiv.org.
    3. Wang, Yung-Hung & Yeh, Chien-Hung & Young, Hsu-Wen Vincent & Hu, Kun & Lo, Men-Tzung, 2014. "On the computational complexity of the empirical mode decomposition algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 159-167.
    4. Bashan, Amir & Bartsch, Ronny & Kantelhardt, Jan W. & Havlin, Shlomo, 2008. "Comparison of detrending methods for fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5080-5090.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Haoyu & Di, Junpeng & Yang, Zhaojun & Han, Qing, 2020. "Assessment of mutual fund performance based on Ensemble Empirical Mode Decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    2. Young, Hsu-Wen Vincent & Hsu, Ke-Hsin & Pham, Van-Truong & Tran, Thi-Thao & Lo, Men-Tzung, 2017. "A new approach to sparse decomposition of nonstationary signals with multiple scale structures using self-consistent nonlinear waves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 1-10.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yung-Hung & Yeh, Chien-Hung & Young, Hsu-Wen Vincent & Hu, Kun & Lo, Men-Tzung, 2014. "On the computational complexity of the empirical mode decomposition algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 159-167.
    2. Francisco Gerardo Benavides-Bravo & Dulce Martinez-Peon & Ángela Gabriela Benavides-Ríos & Otoniel Walle-García & Roberto Soto-Villalobos & Mario A. Aguirre-López, 2021. "A Climate-Mathematical Clustering of Rainfall Stations in the Río Bravo-San Juan Basin (Mexico) by Using the Higuchi Fractal Dimension and the Hurst Exponent," Mathematics, MDPI, vol. 9(21), pages 1-11, October.
    3. Zhao, Xiaojun & Shang, Pengjian & Zhao, Chuang & Wang, Jing & Tao, Rui, 2012. "Minimizing the trend effect on detrended cross-correlation analysis with empirical mode decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 166-173.
    4. Delignières, Didier & Marmelat, Vivien, 2014. "Strong anticipation and long-range cross-correlation: Application of detrended cross-correlation analysis to human behavioral data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 47-60.
    5. Xue Pan & Lei Hou & Mutua Stephen & Huijie Yang & Chenping Zhu, 2014. "Evaluation of Scaling Invariance Embedded in Short Time Series," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-27, December.
    6. Klaudia Kozlowska & Miroslaw Latka & Bruce J West, 2020. "Significance of trends in gait dynamics," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-25, October.
    7. Fernandez Viviana, 2011. "Alternative Estimators of Long-Range Dependence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(2), pages 1-37, March.
    8. Xie, Wen-Jie & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2014. "Extreme value statistics and recurrence intervals of NYMEX energy futures volatility," Economic Modelling, Elsevier, vol. 36(C), pages 8-17.
    9. Gu, Gao-Feng & Xiong, Xiong & Zhang, Yong-Jie & Chen, Wei & Zhang, Wei & Zhou, Wei-Xing, 2016. "Stylized facts of price gaps in limit order books," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 48-58.
    10. Yang, Yan-Hong & Shao, Ying-Hui & Shao, Hao-Lin & Stanley, H. Eugene, 2019. "Revisiting the weak-form efficiency of the EUR/CHF exchange rate market: Evidence from episodes of different Swiss franc regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 734-746.
    11. Perini de Souza, Noéle Bissoli & Cardoso dos Santos, José Vicente & Sperandio Nascimento, Erick Giovani & Bandeira Santos, Alex Alisson & Moreira, Davidson Martins, 2022. "Long-range correlations of the wind speed in a northeast region of Brazil," Energy, Elsevier, vol. 243(C).
    12. Nurbanu Bursa & Hüseyin Tatlýdil, 2015. "Investigation of Credit Default Swaps using Detrended Fluctuation Analysis which is an Econophysical Technique," Eurasian Eononometrics, Statistics and Emprical Economics Journal, Eurasian Academy Of Sciences, vol. 2(2), pages 25-33, October.
    13. Zhang, Feng & Ren, Hang & Miao, Lijuan & Lei, Yadong & Duan, Mingkeng, 2019. "Simulation of daily precipitation from CMIP5 in the Qinghai-Tibet Plateau," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15, pages 68-74.
    14. Jiang, Zhi-Qiang & Xie, Wen-Jie & Zhou, Wei-Xing, 2014. "Testing the weak-form efficiency of the WTI crude oil futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 235-244.
    15. Stavros-Richard G. Christopoulos & Nicholas V. Sarlis, 2017. "An Application of the Coherent Noise Model for the Prediction of Aftershock Magnitude Time Series," Complexity, Hindawi, vol. 2017, pages 1-27, February.
    16. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
    17. Almurad, Zainy M.H. & Delignières, Didier, 2016. "Evenly spacing in Detrended Fluctuation Analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 63-69.
    18. Zhou, Yu & Leung, Yee & Chan, Lung Sang, 2017. "Oscillatory tendency of interevent direction in earthquake sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 120-130.
    19. Carla Caballero & David Barbado & Héctor Hérnandez-Davó & José Luis Hernández-Davó & Francisco J Moreno, 2021. "Balance dynamics are related to age and levels of expertise. Application in young and adult tennis players," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-12, April.
    20. Alvarez-Ramirez, J. & Rodriguez, E., 2018. "AR(p)-based detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 49-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:1003-1017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.