IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4587-d1166779.html
   My bibliography  Save this article

Effect of Clay Brick Waste Powder on the Fresh and Hardened Properties of Self-Compacting Concrete: State-of-the-Art and Life Cycle Assessment

Author

Listed:
  • Mohammed Salah Nasr

    (Technical Institute of Babylon, Al-Furat Al-Awsat Technical University (ATU), Babylon 51015, Iraq)

  • Awham Jumah Salman

    (Technical College of Al-Mussaib, Al-Furat Al-Awsat Technical University (ATU), Babylon 51006, Iraq)

  • Rusul Jaber Ghayyib

    (Technical College of Al-Mussaib, Al-Furat Al-Awsat Technical University (ATU), Babylon 51006, Iraq)

  • Ali Shubbar

    (School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool L3 5UX, UK)

  • Shahad Al-Mamoori

    (Civil Engineering Department, College of Engineering, University of Babylon, Babylon 51002, Iraq)

  • Zainab Al-khafaji

    (Scientific Research Center, Al-Ayen University, Thi-Qar, 64001, Iraq)

  • Tameem Mohammed Hashim

    (Building and Construction Engineering Technology Department, Al-Mustaqbal University College, Babylon 51001, Iraq)

  • Zaid Ali Hasan

    (Technical Institute of Babylon, Al-Furat Al-Awsat Technical University (ATU), Babylon 51015, Iraq)

  • Monower Sadique

    (School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool L3 5UX, UK)

Abstract

Sustainability and reducing environmental damage caused by CO 2 emissions have become issues of interest to researchers in the construction sector around the world. Reducing the cement content in concrete by partially substituting it with by-products or waste falls within this field as the cement industry is responsible for 7% of global CO 2 emissions. On the other hand, self-compacting concrete (SCC) is one of the special types of concrete that contains a large amount of powder (most of which is cement) to ensure its flow under the influence of its weight without separating its components. Therefore, to produce eco-friendly SCC, many researchers have replaced part of the cement with clay brick waste powder (CBWP) since brick units are among the most widely used building materials after concrete. Accordingly, this study aims to review previous research that included using CBWP in SCC. The effect of these wastes on the fresh, mechanical, durability and microstructural properties of cement was reviewed. Additionally, a comparison between the environmental impacts of SCCs with different CBWP contents has been conducted using the life cycle assessment (LCA) approach. It was found that the highest value of CBWP that can be used without negatively affecting the different properties of concrete is 10% by weight of cement. Moreover, regarding environmental impact, using CBWP as a substitute for cement reduces environmental damage, and the lowest environmental impact that can be achieved per strength unit (MPa) is 37.5%.

Suggested Citation

  • Mohammed Salah Nasr & Awham Jumah Salman & Rusul Jaber Ghayyib & Ali Shubbar & Shahad Al-Mamoori & Zainab Al-khafaji & Tameem Mohammed Hashim & Zaid Ali Hasan & Monower Sadique, 2023. "Effect of Clay Brick Waste Powder on the Fresh and Hardened Properties of Self-Compacting Concrete: State-of-the-Art and Life Cycle Assessment," Energies, MDPI, vol. 16(12), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4587-:d:1166779
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4587/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4587/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mays A. Hamad & Mohammed Nasr & Ali Shubbar & Zainab Al-Khafaji & Zainab Al Masoodi & Osamah Al-Hashimi & Patryk Kot & Rafid Alkhaddar & Khalid Hashim, 2021. "Production of Ultra-High-Performance Concrete with Low Energy Consumption and Carbon Footprint Using Supplementary Cementitious Materials Instead of Silica Fume: A Review," Energies, MDPI, vol. 14(24), pages 1-26, December.
    2. Sueli De Fátima de Oliveira Miranda Santos & Cassiano Moro Piekarski & Cássia Maria Lie Ugaya & Danilo Barros Donato & Aldo Braghini Júnior & Antonio Carlos De Francisco & Ana Márcia Macedo Ladeira Ca, 2017. "Life Cycle Analysis of Charcoal Production in Masonry Kilns with and without Carbonization Process Generated Gas Combustion," Sustainability, MDPI, vol. 9(9), pages 1-20, September.
    3. Viviana Letelier & Bastián I. Henríquez-Jara & Miguel Manosalva & Camila Parodi & José Marcos Ortega, 2019. "Use of Waste Glass as A Replacement for Raw Materials in Mortars with a Lower Environmental Impact," Energies, MDPI, vol. 12(10), pages 1-18, May.
    4. Diana Movilla-Quesada & Manuel Lagos-Varas & Aitor C. Raposeiras & Osvaldo Muñoz-Cáceres & Valerio C. Andrés-Valeri & Carla Aguilar-Vidal, 2021. "Analysis of Greenhouse Gas Emissions and the Environmental Impact of the Production of Asphalt Mixes Modified with Recycled Materials," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aref A. Abadel & Mohammed Salah Nasr & Ali Shubbar & Tameem Mohammed Hashim & Rabin Tuladhar, 2023. "Potential Use of Rendering Mortar Waste Powder as a Cement Replacement Material: Fresh, Mechanical, Durability and Microstructural Properties," Sustainability, MDPI, vol. 15(15), pages 1-19, July.
    2. Youcef Aidjouli & Cherif Belebchouche & Abdelkader Hammoudi & El-Hadj Kadri & Said Zaouai & Slawomir Czarnecki, 2024. "Modeling the Properties of Sustainable Self-Compacting Concrete Containing Marble and Glass Powder Wastes Using Response Surface Methodology," Sustainability, MDPI, vol. 16(5), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Rene Rivera Osorto & Michéle Dal Toé Casagrande, 2023. "Environmental Impact Comparison Analysis between a Traditional Hot Mixed Asphalt (HMA) and with the Addition of Recycled Post-Consumer Polyethylene Terephthalate (RPET) through the Life Cycle Assessme," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    2. Murillo Vetroni Barros & Cassiano Moro Piekarski & Antonio Carlos De Francisco, 2018. "Carbon Footprint of Electricity Generation in Brazil: An Analysis of the 2016–2026 Period," Energies, MDPI, vol. 11(6), pages 1-14, June.
    3. Rodrigues, Thaisa & Braghini Junior, Aldo, 2019. "Technological prospecting in the production of charcoal: A patent study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 170-183.
    4. Marcos Vinicius Bueno de Morais & Viviana Vanesa Urbina Guerrero & Edmilson Dias de Freitas & Edson R. Marciotto & Hugo Valdés & Christian Correa & Roberto Agredano & Ismael Vera-Puerto, 2019. "Sensitivity of Radiative and Thermal Properties of Building Material in the Urban Atmosphere," Sustainability, MDPI, vol. 11(23), pages 1-15, December.
    5. Felix Charvet & Arlindo Matos & José Figueiredo da Silva & Luís Tarelho & Mariana Leite & Daniel Neves, 2022. "Charcoal Production in Portugal: Operating Conditions and Performance of a Traditional Brick Kiln," Energies, MDPI, vol. 15(13), pages 1-21, June.
    6. Rosa María Tremiño & Teresa Real-Herraiz & Viviana Letelier & Fernando G. Branco & José Marcos Ortega, 2021. "Effects after 1500 Hardening Days on the Microstructure and Durability-Related Parameters of Mortars Produced by the Incorporation of Waste Glass Powder as a Clinker Replacement," Sustainability, MDPI, vol. 13(7), pages 1-15, April.
    7. Mohamed Amin & Ibrahim Saad Agwa & Nuha Mashaan & Shaker Mahmood & Mahmoud H. Abd-Elrahman, 2023. "Investigation of the Physical Mechanical Properties and Durability of Sustainable Ultra-High Performance Concrete with Recycled Waste Glass," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    8. Sung-Hoon Kang & Yang-Hee Kwon & Juhyuk Moon, 2019. "Quantitative Analysis of CO 2 Uptake and Mechanical Properties of Air Lime-Based Materials," Energies, MDPI, vol. 12(15), pages 1-12, July.
    9. Vicente Leme, Marcio Montagnana & Venturini, Osvaldo José & Silva Lora, Electo Eduardo & de Almeida, Wellington & Rocha, Mateus Henrique & Andrade da Cunha Dias, Tomás & del Olmo, Oscar Almazán, 2021. "Life cycle assessment of charcoal production and electricity generation from eucalyptus in an industrial batch kiln," Renewable Energy, Elsevier, vol. 180(C), pages 232-244.
    10. Ni, Liangmeng & Feng, Zixing & Gao, Qi & Hou, Yanmei & He, Yuyu & Ren, Hao & Su, Mengfu & Liu, Zhijia & Hu, Wanhe, 2022. "A novel mechanical kiln for bamboo molded charcoals manufacturing," Applied Energy, Elsevier, vol. 326(C).
    11. Stanisław Stryczek & Andrzej Gonet & Marcin Kremieniewski, 2022. "Special Cement Slurries for Strengthening Salt Rock Mass," Energies, MDPI, vol. 15(16), pages 1-10, August.
    12. Taísa Medina & João Luiz Calmon & Darli Vieira & Alencar Bravo & Thalya Vieira, 2023. "Life Cycle Assessment of Road Pavements That Incorporate Waste Reuse: A Systematic Review and Guidelines Proposal," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    13. Yudi Wang & Guoqiang Xu, 2022. "Numerical Simulation of Thermal Storage Performance of Different Concrete Floors," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    14. Aref A. Abadel & Mohammed Salah Nasr & Ali Shubbar & Tameem Mohammed Hashim & Rabin Tuladhar, 2023. "Potential Use of Rendering Mortar Waste Powder as a Cement Replacement Material: Fresh, Mechanical, Durability and Microstructural Properties," Sustainability, MDPI, vol. 15(15), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4587-:d:1166779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.