IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4381-d1157977.html
   My bibliography  Save this article

Analysis of the Influence of the Spark Plug on Exhaust Gas Composition

Author

Listed:
  • Karol Tucki

    (Department of Production Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska Street 164, 02-787 Warsaw, Poland)

  • Olga Orynycz

    (Department of Production Management, Faculty of Engineering Management, Bialystok University of Technology, Wiejska Street 45A, 15-351 Bialystok, Poland)

  • Leszek Mieszkalski

    (Department of Production Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska Street 164, 02-787 Warsaw, Poland)

  • Joao Gilberto Mendes dos Reis

    (Postgraduate Program in Production Engineering, Universidade Paulista-UNIP, Dr. Bacelar Street 1212, Sao Paulo 04026002, Brazil)

  • Jonas Matijošius

    (Department of Automobile Engineering, Faculty of Transport Engineering, Vilnius Gediminas Technical University, J. Basanavičiaus Str. 28, LT-03224 Vilnius, Lithuania)

  • Michał Wocial

    (Department of Production Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska Street 164, 02-787 Warsaw, Poland)

  • Ivan Kuric

    (Department of Automation and Production Systems, Faculty of Mechanical Engineering, University of Zilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia)

  • Simone Pascuzzi

    (Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy)

Abstract

This paper analyses the influence of the type of electrode in a spark plug on exhaust gas emission. The objects of the research were the following vehicles of different years of production: the Volkswagen Beetle 1300, the Honda Nighthawk 650, the BMW e46 318i, the Hyundai i10, and the Audi A4 B6. The vehicles were powered by petrol and LPG. Spark plugs were selected for the vehicles, with different kinds of construction for the main electrodes and different numbers of poles but with similar heat values. A comparative analysis of the composition of the exhaust gas mixture was performed, depending on the set of spark plugs used. The amount of CO, HC, CO 2 , and O 2 emissions was analysed. The results were compared with the applicable exhaust gas emission standards. Both in the case of E5 95 petrol and LPG gas, lower exhaust gas emissions were observed when iridium spark plugs were used.

Suggested Citation

  • Karol Tucki & Olga Orynycz & Leszek Mieszkalski & Joao Gilberto Mendes dos Reis & Jonas Matijošius & Michał Wocial & Ivan Kuric & Simone Pascuzzi, 2023. "Analysis of the Influence of the Spark Plug on Exhaust Gas Composition," Energies, MDPI, vol. 16(11), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4381-:d:1157977
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pavlovic, J. & Ciuffo, B. & Fontaras, G. & Valverde, V. & Marotta, A., 2018. "How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 136-147.
    2. Paweł Fabiś & Bartosz Flekiewicz, 2021. "Influence of LPG and DME Composition on Spark Ignition Engine Performance," Energies, MDPI, vol. 14(17), pages 1-18, September.
    3. Kyeongmin Kim & Matthew J. Hall & Preston S. Wilson & Ronald D. Matthews, 2020. "Arc-Phase Spark Plug Energy Deposition Characteristics Measured Using a Spark Plug Calorimeter Based on Differential Pressure Measurement," Energies, MDPI, vol. 13(14), pages 1-19, July.
    4. Alessandro Brusa & Nicolò Cavina & Nahuel Rojo & Jacopo Mecagni & Enrico Corti & Davide Moro & Matteo Cucchi & Nicola Silvestri, 2021. "Development and Experimental Validation of an Adaptive, Piston-Damage-Based Combustion Control System for SI Engines: Part 2—Implementation of Adaptive Strategies," Energies, MDPI, vol. 14(17), pages 1-21, August.
    5. Tomáš Skrúcaný & Martin Kendra & Ondrej Stopka & Saša Milojević & Tomasz Figlus & Csaba Csiszár, 2019. "Impact of the Electric Mobility Implementation on the Greenhouse Gases Production in Central European Countries," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    6. Giorgio La Civita & Francesco Orlandi & Valerio Mariani & Giulio Cazzoli & Emanuele Ghedini, 2021. "Numerical Characterization of Corona Spark Plugs and Its Effects on Radicals Production," Energies, MDPI, vol. 14(2), pages 1-22, January.
    7. Paweł Fabiś & Marek Flekiewicz, 2022. "The Influence of LPG and DME Mixtures on Passenger Car Performance," Energies, MDPI, vol. 15(19), pages 1-14, September.
    8. Giovanni Cecere & Adrian Irimescu & Simona Silvia Merola & Luciano Rolando & Federico Millo, 2022. "Lean Burn Flame Kernel Characterization for Different Spark Plug Designs and Orientations in an Optical GDI Engine," Energies, MDPI, vol. 15(9), pages 1-17, May.
    9. Alessandro Brusa & Nicolò Cavina & Nahuel Rojo & Jacopo Mecagni & Enrico Corti & Vittorio Ravaglioli & Matteo Cucchi & Nicola Silvestri, 2021. "Development and Experimental Validation of an Adaptive, Piston-Damage-Based Combustion Control System for SI Engines: Part 1—Evaluating Open-Loop Chain Performance," Energies, MDPI, vol. 14(17), pages 1-27, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gábor Horváth & Attila Bai & Sándor Szegedi & István Lázár & Csongor Máthé & László Huzsvai & Máté Zakar & Zoltán Gabnai & Tamás Tóth, 2023. "A Comprehensive Review of the Distinctive Tendencies of the Diffusion of E-Mobility in Central Europe," Energies, MDPI, vol. 16(14), pages 1-29, July.
    2. Alessandro Brusa & Emanuele Giovannardi & Massimo Barichello & Nicolò Cavina, 2022. "Comparative Evaluation of Data-Driven Approaches to Develop an Engine Surrogate Model for NOx Engine-Out Emissions under Steady-State and Transient Conditions," Energies, MDPI, vol. 15(21), pages 1-22, October.
    3. Filip Škultéty & Dominika Beňová & Jozef Gnap, 2021. "City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    4. Baek, Seungju & Lee, Hyeonjik & Lee, Kihyung, 2021. "Fuel efficiency and exhaust characteristics of turbocharged diesel engine equipped with an electric supercharger," Energy, Elsevier, vol. 214(C).
    5. Cempírek Václav & Rybicka Iwona & Ljubaj Ivica, 2019. "Development of Electromobility in Terms of Freight Transport," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 10(2), pages 23-32, November.
    6. Inmo Youn & Joonho Jeon, 2022. "Combustion Performance and Low NOx Emissions of a Dimethyl Ether Compression-Ignition Engine at High Injection Pressure and High Exhaust Gas Recirculation Rate," Energies, MDPI, vol. 15(5), pages 1-11, March.
    7. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    8. Barouch Giechaskiel & Dimitrios Komnos & Georgios Fontaras, 2021. "Impacts of Extreme Ambient Temperatures and Road Gradient on Energy Consumption and CO 2 Emissions of a Euro 6d-Temp Gasoline Vehicle," Energies, MDPI, vol. 14(19), pages 1-20, September.
    9. Kangda Chen & Fuquan Zhao & Xinglong Liu & Han Hao & Zongwei Liu, 2021. "Impacts of the New Worldwide Light-Duty Test Procedure on Technology Effectiveness and China’s Passenger Vehicle Fuel Consumption Regulations," IJERPH, MDPI, vol. 18(6), pages 1-20, March.
    10. José I. Huertas & Michael Giraldo & Luis F. Quirama & Jenny Díaz, 2018. "Driving Cycles Based on Fuel Consumption," Energies, MDPI, vol. 11(11), pages 1-13, November.
    11. Song, Jingeun & Cha, Junepyo, 2022. "Development of prediction methodology for CO2 emissions and fuel economy of light duty vehicle," Energy, Elsevier, vol. 244(PB).
    12. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    13. Bogdan Ulejczyk & Paweł Jóźwik & Łukasz Nogal & Michał Młotek & Krzysztof Krawczyk, 2022. "Efficient Conversion of Ethanol to Hydrogen in a Hybrid Plasma-Catalytic Reactor," Energies, MDPI, vol. 15(9), pages 1-11, April.
    14. Carlos Armenta-Déu, 2024. "Improving Sustainability in Urban and Road Transportation: Dual Battery Block and Fuel Cell Hybrid Power System for Electric Vehicles," Sustainability, MDPI, vol. 16(5), pages 1-21, March.
    15. Wojciech Lewicki & Wojciech Drozdz, 2021. "Electromobility and its Development Prospects in the Context of Industry 4.0: A Comparative Study of Poland and the European Union," European Research Studies Journal, European Research Studies Journal, vol. 0(2B), pages 135-144.
    16. Wojciech Lewicki & Wojciech Drozdz & Piotr Wroblewski & Krzysztof Zarna, 2021. "The Road to Electromobility in Poland: Consumer Attitude Assessment," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 28-39.
    17. Stefan Tabacu & Dragos Popa, 2023. "Backward-Facing Analysis for the Preliminary Estimation of the Vehicle Fuel Consumption," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    18. Buberger, Johannes & Kersten, Anton & Kuder, Manuel & Eckerle, Richard & Weyh, Thomas & Thiringer, Torbjörn, 2022. "Total CO2-equivalent life-cycle emissions from commercially available passenger cars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Salvo, Orlando de & Vaz de Almeida, Flávio G., 2019. "Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption," Applied Energy, Elsevier, vol. 241(C), pages 98-112.
    20. Mohammad Junaid & Zsolt Szalay & Árpád Török, 2021. "Evaluation of Non-Classical Decision-Making Methods in Self Driving Cars: Pedestrian Detection Testing on Cluster of Images with Different Luminance Conditions," Energies, MDPI, vol. 14(21), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4381-:d:1157977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.