IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4297-d1154662.html
   My bibliography  Save this article

Exergy Analysis of a Shell and Tube Energy Storage Unit with Different Inclination Angles

Author

Listed:
  • Li Peng

    (College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
    School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430081, China)

  • Hongjun Wu

    (College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China)

  • Wenlong Cao

    (School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430081, China)

  • Qianjun Mao

    (School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430081, China)

Abstract

To optimize the utilization of solar energy in the latent heat thermal energy storage (LHTES) system, this study conducts exergy analysis on a paraffin-solar water shell and tube unit established in the literature to evaluate the effects of different inclination angles, inlet temperatures, original temperatures, and fluid flow rates on the exergy and exergy efficiency. Firstly, the thermodynamic characteristics of the water and the natural convection effects of the paraffin change with different inclination angles. When the inclination angle of the heat storage tank is less than 30°, the maximum exergy inlet rate rises from 0 to 144.6 W in a very short time, but it decreases to 65.7 W for an inclination angle of 60°. When the inclination angle is increased from 0° to 30°, the exergy efficiency rises from 86% to 89.7%, but it decreases from 94% to 89.9% with the inclination angle from 60° to 90°. Secondly, under the condition that the inclination angle of the energy storage unit is 60°, although increasing the inlet temperature of the solar water enhances the exergy inlet and storage and reduces the charging time, it increases the heat transfer temperature difference and the irreversible loss of the system, thus reducing the exergy efficiency. As the inlet water temperature is increased from 83 to 98 °C, the exergy efficiency decreases from 94.7% to 93.6%. Moreover, increasing the original temperature of the LHTES unit not only reduces the exergy inlet and storage rates but also decreases the available work capacity and exergy efficiency. Finally, increasing the inlet water flow rate increases the exergy inlet and storage rates slightly. The exergy efficiency decreases from 95.6% to 93.3% as the unit original temperature is increased from 15 to 30 °C, and it is enhanced from 94% to 94.6% as the inlet flow rate is increased from 0.085 to 0.34 kg/s with the unit inclination angle of 60°. It is found that arranging the shell and tube unit at an inclination angle is useful for improving the LHTES system’s thermal performance, and the exergy analysis conducted aims to reduce available energy dissipation and exergy loss in the thermal storage system. This study provides instructions for solar energy utilization and energy storage.

Suggested Citation

  • Li Peng & Hongjun Wu & Wenlong Cao & Qianjun Mao, 2023. "Exergy Analysis of a Shell and Tube Energy Storage Unit with Different Inclination Angles," Energies, MDPI, vol. 16(11), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4297-:d:1154662
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4297/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4297/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Zhengbiao & He, Dongfeng & Zhao, Hongbo, 2023. "Multi-objective optimization of energy distribution in steel enterprises considering both exergy efficiency and energy cost," Energy, Elsevier, vol. 263(PB).
    2. Mao, Qianjun & Cao, Wenlong, 2023. "Effect of variable capsule size on energy storage performances in a high-temperature three-layered packed bed system," Energy, Elsevier, vol. 273(C).
    3. Wang, Yi & He, Guanzhang & Huang, Haozhong & Guo, Xiaoyu & Xing, Kongzhao & Liu, Songtao & Tu, Zhanfei & Xia, Qi, 2023. "Thermodynamic and exergy analysis of high compression ratio coupled with late intake valve closing to improve thermal efficiency of two-stage turbocharged diesel engines," Energy, Elsevier, vol. 268(C).
    4. Wang, Yongli & Huang, Feifei & Tao, Siyi & Ma, Yang & Ma, Yuze & Liu, Lin & Dong, Fugui, 2022. "Multi-objective planning of regional integrated energy system aiming at exergy efficiency and economy," Applied Energy, Elsevier, vol. 306(PB).
    5. Li, Boyu & Hong, Wenpeng & Li, Haoran & Lan, Jingrui & Zi, Junliang, 2022. "Optimized energy distribution management in the nanofluid-assisted photovoltaic/thermal system via exergy efficiency analysis," Energy, Elsevier, vol. 242(C).
    6. Vahidinia, F. & Khorasanizadeh, H. & Aghaei, A., 2023. "Energy, exergy, economic and environmental evaluations of a finned absorber tube parabolic trough collector utilizing hybrid and mono nanofluids and comparison," Renewable Energy, Elsevier, vol. 205(C), pages 185-199.
    7. Braimakis, Konstantinos & Karellas, Sotirios, 2023. "Exergy efficiency potential of dual-phase expansion trilateral and partial evaporation ORC with zeotropic mixtures," Energy, Elsevier, vol. 262(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    2. Wang, Yongli & Guo, Lu & Wang, Yanan & Zhang, Yunfei & Zhang, Siwen & Liu, Zeqiang & Xing, Juntai & Liu, Ximei, 2024. "Bi-level programming optimization method of rural integrated energy system based on coupling coordination degree of energy equipment," Energy, Elsevier, vol. 298(C).
    3. Jiyong Li & Zeyi Hua & Lin Tian & Peiwen Chen & Hao Dong, 2024. "Optimal Capacity Allocation for Life Cycle Multiobjective Integrated Energy Systems Considering Capacity Tariffs and Eco-Indicator 99," Sustainability, MDPI, vol. 16(20), pages 1-22, October.
    4. Chen, Ying & Liu, Yuxuan & Nam, Eun-Young & Zhang, Yang & Dahlak, Aida, 2023. "Exergoeconomic and exergoenvironmental analysis and optimization of an integrated double-flash-binary geothermal system and dual-pressure ORC using zeotropic mixtures; multi-objective optimization," Energy, Elsevier, vol. 283(C).
    5. Wang, Xiaolei & Deng, Renxin & Yang, Yufang, 2023. "The spatiotemporal effect of factor price distortion on capacity utilization in China’s iron and steel industry," Resources Policy, Elsevier, vol. 86(PA).
    6. Song, Yue & Zhou, Yu & Zhao, Shuai & Du, Fa-rong & Li, Xue-yu & Zhu, Kun & Yan, Huan-song & Xu, Zheng & Ding, Shui-ting, 2024. "Cyclic coupling and working characteristics analysis of a novel combined cycle engine concept for aviation applications," Energy, Elsevier, vol. 301(C).
    7. Miqdam T. Chaichan & Hussein A. Kazem & Moafaq K. S. Al-Ghezi & Ali H. A. Al-Waeli & Ali J. Ali & Kamaruzzaman Sopian & Abdul Amir H. Kadhum & Wan Nor Roslam Wan Isahak & Mohd S. Takriff & Ahmed A. Al, 2023. "Effect of Different Preparation Parameters on the Stability and Thermal Conductivity of MWCNT-Based Nanofluid Used for Photovoltaic/Thermal Cooling," Sustainability, MDPI, vol. 15(9), pages 1-24, May.
    8. Zhao, Naixin & Gu, Wenbo & Zheng, Zipeng & Ma, Tao, 2023. "Multi-objective bi-level planning of the integrated energy system considering uncertain user loads and carbon emission during the equipment manufacturing process," Renewable Energy, Elsevier, vol. 216(C).
    9. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    10. Yang, Xiaohui & Wang, Xiaopeng & Deng, Yeheng & Mei, Linghao & Deng, Fuwei & Zhang, Zhonglian, 2023. "Integrated energy system scheduling model based on non-complete interval multi-objective fuzzy optimization," Renewable Energy, Elsevier, vol. 218(C).
    11. Evangelos Bellos & Dimitrios N. Korres & Christos Tzivanidis, 2023. "Investigation of a Compound Parabolic Collector with a Flat Glazing," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    12. Anagnostopoulos, Argyrios & Xenitopoulos, Theofilos & Ding, Yulong & Seferlis, Panos, 2024. "An integrated machine learning and metaheuristic approach for advanced packed bed latent heat storage system design and optimization," Energy, Elsevier, vol. 297(C).
    13. Zhao, Xiangming & Guo, Jianxiang & He, Maogang, 2023. "Multi-objective optimization and improvement of multi-energy combined cooling, heating and power system based on system simplification," Renewable Energy, Elsevier, vol. 217(C).
    14. Hong, Wenpeng & Li, Boyu & Li, Haoran & Zi, Junliang, 2023. "Output energy distribution potential enabled by a nanofluid-assisted hybrid generator," Energy, Elsevier, vol. 265(C).
    15. Li, Jiaxi & Wang, Dan & Jia, Hongjie & Lei, Yang & Zhou, Tianshuo & Guo, Ying, 2022. "Mechanism analysis and unified calculation model of exergy flow distribution in regional integrated energy system," Applied Energy, Elsevier, vol. 324(C).
    16. Liu, Lintong & Zhai, Rongrong & Hu, Yangdi, 2023. "Multi-objective optimization with advanced exergy analysis of a wind-solar‑hydrogen multi-energy supply system," Applied Energy, Elsevier, vol. 348(C).
    17. Xie, Mingjiang & Zhao, Jianli & Zuo, Ming J. & Tian, Zhigang & Liu, Libin & Wu, Jinming, 2023. "Multi-objective maintenance decision-making of corroded parallel pipeline systems," Applied Energy, Elsevier, vol. 351(C).
    18. Lu, Pei & Chen, Kaihuang & Luo, Xianglong & Wu, Wei & Liang, Yingzong & Chen, Jianyong & Chen, Ying, 2024. "Experimental and simulation study on a zeotropic ORC system using R1234ze(E)/R245fa as working fluid," Energy, Elsevier, vol. 292(C).
    19. Guillermo Valencia Ochoa & York Castillo Santiago & Jorge Duarte Forero & Juan B. Restrepo & Alberto Ricardo Albis Arrieta, 2023. "A Comprehensive Comparative Analysis of Energetic and Exergetic Performance of Different Solar-Based Organic Rankine Cycles," Energies, MDPI, vol. 16(6), pages 1-26, March.
    20. Chen, Xianqing & Dong, Wei & Yang, Lingfang & Yang, Qiang, 2023. "Scenario-based robust capacity planning of regional integrated energy systems considering carbon emissions," Renewable Energy, Elsevier, vol. 207(C), pages 359-375.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4297-:d:1154662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.