IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics096014812401382x.html
   My bibliography  Save this article

A preference adjustable capacity configuration optimization method for hydrogen-containing integrated energy system considering dynamic energy efficiency improvement and load fast tracking

Author

Listed:
  • Zhao, Huirong
  • Yao, Yuqi
  • Peng, Daogang
  • Zhao, Peixi

Abstract

The new hydrogen-containing integrated energy system proposed in this paper has complementary coupling of multiple energy forms such as electricity, gas, cold, heat, and hydrogen. For the same type of load demand, equipment with different energy input forms can be dispatched for joint supply. However, different equipment differ in dynamic response speed and energy utilization efficiency, and the reasonable configuration of equipment capacity will directly affect the overall dynamic characteristics and energy efficiency level of the system. Therefore, this paper first proposes an evaluation index that can comprehensively characterize the dynamic energy efficiency and load tracking ability of energy equipment. In addition, a preference adjustable capacity configuration optimization method based on utopian point tracking is proposed with the two optimization objectives of this indicator and the system's equivalent annualized investment cost, and the solution complexity is reduced through segmented linearization of the objective. Simulations presented here show that the capacity configuration optimization method proposed in this paper has a positive effect on improving the dynamic energy efficiency and load tracking ability of the new hydrogen-containing integrated energy system, and can also meet the preference setting needs of different investment entities for capacity configuration optimization goals.

Suggested Citation

  • Zhao, Huirong & Yao, Yuqi & Peng, Daogang & Zhao, Peixi, 2024. "A preference adjustable capacity configuration optimization method for hydrogen-containing integrated energy system considering dynamic energy efficiency improvement and load fast tracking," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s096014812401382x
    DOI: 10.1016/j.renene.2024.121314
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812401382X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121314?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Aili & Wang, Shunsheng & Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood & Moghadam, Ali Jabari, 2022. "Techno-economic and techno-environmental assessment and multi-objective optimization of a new CCHP system based on waste heat recovery from regenerative Brayton cycle," Energy, Elsevier, vol. 241(C).
    2. Zhu, Pengfei & Wu, Zhen & Yang, Yuchen & Wang, Huan & Li, Ruiqing & Yang, Fusheng & Zhang, Zaoxiao, 2023. "The dynamic response of solid oxide fuel cell fueled by syngas during the operating condition variations," Applied Energy, Elsevier, vol. 349(C).
    3. Viole, Isabelle & Valenzuela-Venegas, Guillermo & Zeyringer, Marianne & Sartori, Sabrina, 2023. "A renewable power system for an off-grid sustainable telescope fueled by solar power, batteries and green hydrogen," Energy, Elsevier, vol. 282(C).
    4. Wang, Chuyao & Ji, Jie & Song, Zhiying & Ke, Wei, 2024. "Performance analysis and capacity configuration of building energy system integrated with PV/T technology under different operation strategies," Energy, Elsevier, vol. 293(C).
    5. Hu, Mengqi & Cho, Heejin, 2014. "A probability constrained multi-objective optimization model for CCHP system operation decision support," Applied Energy, Elsevier, vol. 116(C), pages 230-242.
    6. Ai, Tianchao & Chen, Hongwei & Zhong, Fanghao & Jia, Jiandong & Song, Yangfan, 2023. "Multi-objective optimization of a novel CCHP system with organic flash cycle based on different operating strategies," Energy, Elsevier, vol. 276(C).
    7. Pang, Yi & Pan, Lei & Zhang, Jingmei & Chen, Jianwei & Dong, Yan & Sun, Hexu, 2022. "Integrated sizing and scheduling of an off-grid integrated energy system for an isolated renewable energy hydrogen refueling station," Applied Energy, Elsevier, vol. 323(C).
    8. Chen, Xianqing & Dong, Wei & Yang, Lingfang & Yang, Qiang, 2023. "Scenario-based robust capacity planning of regional integrated energy systems considering carbon emissions," Renewable Energy, Elsevier, vol. 207(C), pages 359-375.
    9. Laimon, M. & Yusaf, T., 2024. "Towards energy freedom: Exploring sustainable solutions for energy independence and self-sufficiency using integrated renewable energy-driven hydrogen system," Renewable Energy, Elsevier, vol. 222(C).
    10. Wang, Yongli & Huang, Feifei & Tao, Siyi & Ma, Yang & Ma, Yuze & Liu, Lin & Dong, Fugui, 2022. "Multi-objective planning of regional integrated energy system aiming at exergy efficiency and economy," Applied Energy, Elsevier, vol. 306(PB).
    11. Zheng, Bingle & Wu, Xiao, 2022. "Integrated capacity configuration and control optimization of off-grid multiple energy system for transient performance improvement," Applied Energy, Elsevier, vol. 311(C).
    12. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Li, Bingkang & Fei, Haoran & Zhang, Yiyue & Wang, Xuejie, 2023. "Multi-objective distributionally robust optimization for hydrogen-involved total renewable energy CCHP planning under source-load uncertainties," Applied Energy, Elsevier, vol. 342(C).
    13. Song, Zhihui & Liu, Tao & Lin, Qizhao, 2020. "Multi-objective optimization of a solar hybrid CCHP system based on different operation modes," Energy, Elsevier, vol. 206(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xianqing & Yang, Lingfang & Dong, Wei & Yang, Qiang, 2024. "Net-zero carbon emission oriented Bi-level optimal capacity planning of integrated energy system considering carbon capture and hydrogen facilities," Renewable Energy, Elsevier, vol. 237(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Naixin & Gu, Wenbo & Zheng, Zipeng & Ma, Tao, 2023. "Multi-objective bi-level planning of the integrated energy system considering uncertain user loads and carbon emission during the equipment manufacturing process," Renewable Energy, Elsevier, vol. 216(C).
    2. Ren, Xin-Yu & Li, Ling-Ling & Ji, Bing-Xiang & Liu, Jia-Qi, 2024. "Design and analysis of solar hybrid combined cooling, heating and power system: A bi-level optimization model," Energy, Elsevier, vol. 292(C).
    3. Liu, Sha & Shen, Jiong & Zhang, Junli, 2024. "A novel configuration optimization approach for IES considering exergy-degradation and non-energy costs of equipment," Energy, Elsevier, vol. 312(C).
    4. Zhao, Xiangming & Guo, Jianxiang & He, Maogang, 2023. "Multi-objective optimization and improvement of multi-energy combined cooling, heating and power system based on system simplification," Renewable Energy, Elsevier, vol. 217(C).
    5. Dai, Yiru & Zeng, Yipu, 2022. "Optimization of CCHP integrated with multiple load, replenished energy, and hybrid storage in different operation modes," Energy, Elsevier, vol. 260(C).
    6. Li, Yingjie & Liu, Fang & Chen, Ke & Liu, Yinghui, 2024. "Technical and economic analysis of a hybrid PV/wind energy system for hydrogen refueling stations," Energy, Elsevier, vol. 303(C).
    7. Viole, Isabelle & Valenzuela-Venegas, Guillermo & Sartori, Sabrina & Zeyringer, Marianne, 2024. "Integrated life cycle assessment in off-grid energy system design—Uncovering low hanging fruit for climate mitigation," Applied Energy, Elsevier, vol. 367(C).
    8. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    9. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    10. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    11. Wang, Yongli & Guo, Lu & Wang, Yanan & Zhang, Yunfei & Zhang, Siwen & Liu, Zeqiang & Xing, Juntai & Liu, Ximei, 2024. "Bi-level programming optimization method of rural integrated energy system based on coupling coordination degree of energy equipment," Energy, Elsevier, vol. 298(C).
    12. Jiyong Li & Zeyi Hua & Lin Tian & Peiwen Chen & Hao Dong, 2024. "Optimal Capacity Allocation for Life Cycle Multiobjective Integrated Energy Systems Considering Capacity Tariffs and Eco-Indicator 99," Sustainability, MDPI, vol. 16(20), pages 1-22, October.
    13. Zhang, Han & Han, Zhonghe & Wu, Di & Li, Peng & Li, Peng, 2023. "Energy optimization and performance analysis of a novel integrated energy system coupled with solar thermal unit and preheated organic cycle under extended following electric load strategy," Energy, Elsevier, vol. 272(C).
    14. Jie Ji & Fucheng Wang & Mengxiong Zhou & Renwei Guo & Rundong Ji & Hui Huang & Jiayu Zhang & Muhammad Shahzad Nazir & Tian Peng & Chu Zhang & Jiahui Huang & Yaodong Wang, 2022. "Evaluation Study on a Novel Structure CCHP System with a New Comprehensive Index Using Improved ALO Algorithm," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    15. Afzal, Asif & Buradi, Abdulrajak & Jilte, Ravindra & Shaik, Saboor & Kaladgi, Abdul Razak & Arıcı, Muslum & Lee, Chew Tin & Nižetić, Sandro, 2023. "Optimizing the thermal performance of solar energy devices using meta-heuristic algorithms: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Liang, Zhaojian & Chen, Shanlin & Ni, Meng & Wang, Jingyi & Li, Mengying, 2024. "A novel control strategy to neutralize internal heat source within solid oxide electrolysis cell (SOEC) under variable solar power conditions," Applied Energy, Elsevier, vol. 371(C).
    17. Baohong Jin & Zhichao Liu & Yichuan Liao, 2023. "Exploring the Impact of Regional Integrated Energy Systems Performance by Energy Storage Devices Based on a Bi-Level Dynamic Optimization Model," Energies, MDPI, vol. 16(6), pages 1-21, March.
    18. Wu, Xiao & Yang, Lihua & Zheng, Bingle, 2024. "Joint capacity configuration and demand response optimization of integrated energy system considering economic and dynamic control performance," Energy, Elsevier, vol. 301(C).
    19. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    20. Haiyan Meng & Yakai Lu & Zhe Tian & Xiangbei Jiang & Zhongqing Han & Jide Niu, 2023. "Performance Evaluation Method of Day-Ahead Load Prediction Models in a District Heating and Cooling System: A Case Study," Energies, MDPI, vol. 16(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s096014812401382x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.