IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p306-d1016965.html
   My bibliography  Save this article

Comparative Analysis of a New Class of Symmetric and Asymmetric Supercapacitors Constructed on the Basis of ITO Collectors

Author

Listed:
  • Michał Gocki

    (Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanics and Technology, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Agnieszka Jakubowska-Ciszek

    (Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Piotr Pruski

    (Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

Abstract

The paper presents the results of research on new electroconductive polymer materials, based on polypyrrole, for the different supercapacitor constructions, i.e., the symmetric and asymmetric constructions. All the supercapacitors considered contain ITO collectors. Measurements of the complex impedance frequency characteristics were performed for these elements using the electrochemical impedance spectroscopy (EIS) method. Selected fractional-order models, known from the literature, have been used to model the impedance of these elements. The Particle Swarm Optimization (PSO) algorithm was used to estimate the model parameters. Selected estimation results, their comparison, and conclusions are also presented in the paper. The type of active electrolyte component has the greatest impact on the shape of the impedance frequency characteristics. In most cases, the highest capacitance values and the smallest resistance values were obtained for asymmetric supercapacitors.

Suggested Citation

  • Michał Gocki & Agnieszka Jakubowska-Ciszek & Piotr Pruski, 2022. "Comparative Analysis of a New Class of Symmetric and Asymmetric Supercapacitors Constructed on the Basis of ITO Collectors," Energies, MDPI, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:306-:d:1016965
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/306/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/306/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hajra Khan & Imran Fareed Nizami & Saeed Mian Qaisar & Asad Waqar & Moez Krichen & Abdulaziz Turki Almaktoom, 2022. "Analyzing Optimal Battery Sizing in Microgrids Based on the Feature Selection and Machine Learning Approaches," Energies, MDPI, vol. 15(21), pages 1-22, October.
    2. Burke, Andrew, 2000. "Ultracapacitors: Why, How, and Where is the Technology," Institute of Transportation Studies, Working Paper Series qt9n905017, Institute of Transportation Studies, UC Davis.
    3. Bogdan Gilev & Miroslav Andreev & Nikolay Hinov & George Angelov, 2022. "Modeling and Simulation of a Low-Cost Fast Charging Station Based on a Micro Gas Turbine and a Supercapacitor," Energies, MDPI, vol. 15(21), pages 1-15, October.
    4. Saif Jamal & Jagadeesh Pasupuleti & Nur Azzammudin Rahmat & Nadia M. L. Tan, 2022. "Energy Management System for Grid-Connected Nanogrid during COVID-19," Energies, MDPI, vol. 15(20), pages 1-20, October.
    5. Kasun Subasinghage & Kosala Gunawardane & Nisitha Padmawansa & Nihal Kularatna & Mehdi Moradian, 2022. "Modern Supercapacitors Technologies and Their Applicability in Mature Electrical Engineering Applications," Energies, MDPI, vol. 15(20), pages 1-15, October.
    6. Pruski, Piotr & Paszek, Stefan, 2018. "Calculations of power system electromechanical eigenvalues based on analysis of instantaneous power waveforms at different disturbances," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 104-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yujie & Sun, Zhendong & Li, Xiyun & Yang, Xiaoyu & Chen, Zonghai, 2019. "A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems," Energy, Elsevier, vol. 189(C).
    2. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    3. Hauge, H.H. & Presser, V. & Burheim, O., 2014. "In-situ and ex-situ measurements of thermal conductivity of supercapacitors," Energy, Elsevier, vol. 78(C), pages 373-383.
    4. Simon Krüner & Christoph M. Hackl, 2022. "Nonlinear Modelling and Control of a Power Smoothing System for a Novel Wave Energy Converter Prototype," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    5. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.
    6. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    7. Moez Krichen & Yasir Basheer & Saeed Mian Qaisar & Asad Waqar, 2023. "A Survey on Energy Storage: Techniques and Challenges," Energies, MDPI, vol. 16(5), pages 1-29, February.
    8. Ataur Rahman & Kyaw Myo Aung & Sany Ihsan & Raja Mazuir Raja Ahsan Shah & Mansour Al Qubeissi & Mohannad T. Aljarrah, 2023. "Solar Energy Dependent Supercapacitor System with ANFIS Controller for Auxiliary Load of Electric Vehicles," Energies, MDPI, vol. 16(6), pages 1-23, March.
    9. Guangyue Gu & Youliang Lao & Yaxiong Ji & Shasha Yuan & Haijing Liu & Peng Du, 2023. "Development of hybrid super-capacitor and lead-acid battery power storage systems," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 159-166.
    10. A.K. Shukla & T. Prem Kumar, 2013. "Nanostructured electrode materials for electrochemical energy storage and conversion," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 14-30, January.
    11. Xiang, Dong & Yin, Longwei & Wang, Chenxiang & Zhang, Luyuan, 2016. "High electrochemical performance of RuO2–Fe2O3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material," Energy, Elsevier, vol. 106(C), pages 103-111.
    12. González, Ander & Goikolea, Eider & Barrena, Jon Andoni & Mysyk, Roman, 2016. "Review on supercapacitors: Technologies and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1189-1206.
    13. Seman, Raja Noor Amalina Raja & Azam, Mohd Asyadi & Mohamad, Ahmad Azmin, 2017. "Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 644-659.
    14. Elma, Onur & Selamogullari, Ugur Savas, 2012. "A comparative sizing analysis of a renewable energy supplied stand-alone house considering both demand side and source side dynamics," Applied Energy, Elsevier, vol. 96(C), pages 400-408.
    15. Uzunoglu, M. & Onar, O.C. & Alam, M.S., 2009. "Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications," Renewable Energy, Elsevier, vol. 34(3), pages 509-520.
    16. Shuyue Lin & Xin Tong & Xiaowei Zhao & George Weiss, 2018. "The Parallel Virtual Infinite Capacitor Applied to DC-Link Voltage Filtering for Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-19, June.
    17. Farhan Farooq & Asad Khan & Seung June Lee & Mohammad Mahad Nadeem & Woojin Choi, 2021. "A Multi-Channel Fast Impedance Spectroscopy Instrument Developed for Quality Assurance of Super-Capacitors," Energies, MDPI, vol. 14(4), pages 1-14, February.
    18. Zhang, Lei & Hu, Xiaosong & Wang, Zhenpo & Sun, Fengchun & Dorrell, David G., 2018. "A review of supercapacitor modeling, estimation, and applications: A control/management perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1868-1878.
    19. Kuperman, Alon & Aharon, Ilan, 2011. "Battery-ultracapacitor hybrids for pulsed current loads: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 981-992, February.
    20. Jooyoung Park & Gyo-Bum Chung & Jungdong Lim & Dongsu Yang, 2015. "Dynamic Power Management for Portable Hybrid Power-Supply Systems Utilizing Approximate Dynamic Programming," Energies, MDPI, vol. 8(6), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:306-:d:1016965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.