IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v78y2014icp373-383.html
   My bibliography  Save this article

In-situ and ex-situ measurements of thermal conductivity of supercapacitors

Author

Listed:
  • Hauge, H.H.
  • Presser, V.
  • Burheim, O.

Abstract

Thermal signature of supercapacitors are investigated in-situ and ex-situ using commercial supercapacitors.

Suggested Citation

  • Hauge, H.H. & Presser, V. & Burheim, O., 2014. "In-situ and ex-situ measurements of thermal conductivity of supercapacitors," Energy, Elsevier, vol. 78(C), pages 373-383.
  • Handle: RePEc:eee:energy:v:78:y:2014:i:c:p:373-383
    DOI: 10.1016/j.energy.2014.10.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214011712
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.10.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Ton-Churo & Leu, Yih-Guang & Chang, Yuan-Chang & Hou, Sheng-Yun & Li, Cheng-Chou, 2013. "An energy harvester using self-powered feed forward converter charging approach," Energy, Elsevier, vol. 55(C), pages 769-777.
    2. Musolino, V. & Pievatolo, A. & Tironi, E., 2011. "A statistical approach to electrical storage sizing with application to the recovery of braking energy," Energy, Elsevier, vol. 36(11), pages 6697-6704.
    3. Rodrigues, E.M.G. & Godina, R. & Santos, S.F. & Bizuayehu, A.W. & Contreras, J. & Catalão, J.P.S., 2014. "Energy storage systems supporting increased penetration of renewables in islanded systems," Energy, Elsevier, vol. 75(C), pages 265-280.
    4. Wang, Kai & Zhang, Li & Ji, Bingcheng & Yuan, Jinlei, 2013. "The thermal analysis on the stackable supercapacitor," Energy, Elsevier, vol. 59(C), pages 440-444.
    5. Burke, Andrew, 2000. "Ultracapacitors: Why, How, and Where is the Technology," Institute of Transportation Studies, Working Paper Series qt9n905017, Institute of Transportation Studies, UC Davis.
    6. Dargahi, Vahid & Sadigh, Arash Khoshkbar & Pahlavani, Mohammad Reza Alizadeh & Shoulaie, Abbas, 2012. "DC (direct current) voltage source reduction in stacked multicell converter based energy systems," Energy, Elsevier, vol. 46(1), pages 649-663.
    7. Kamel, Rashad M. & Chaouachi, Aymen & Nagasaka, Ken, 2010. "Wind power smoothing using fuzzy logic pitch controller and energy capacitor system for improvement Micro-Grid performance in islanding mode," Energy, Elsevier, vol. 35(5), pages 2119-2129.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tehrani, Z. & Thomas, D.J. & Korochkina, T. & Phillips, C.O. & Lupo, D. & Lehtimäki, S. & O'Mahony, J. & Gethin, D.T., 2017. "Large-area printed supercapacitor technology for low-cost domestic green energy storage," Energy, Elsevier, vol. 118(C), pages 1313-1321.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    2. Zhang, Lei & Hu, Xiaosong & Wang, Zhenpo & Sun, Fengchun & Dorrell, David G., 2018. "A review of supercapacitor modeling, estimation, and applications: A control/management perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1868-1878.
    3. Shen, Chih-Lung & Ko, Yong-Xian, 2014. "Hybrid-input power supply with PFC (power factor corrector) and MPPT (maximum power point tracking) features for battery charging and HB-LED driving," Energy, Elsevier, vol. 72(C), pages 501-509.
    4. Huang, Ton-Churo & Leu, Yih-Guang & Chang, Yuan-Chang & Hou, Sheng-Yun & Li, Cheng-Chou, 2013. "An energy harvester using self-powered feed forward converter charging approach," Energy, Elsevier, vol. 55(C), pages 769-777.
    5. Jeongbin Lee & Jaeshin Yi & Daeyong Kim & Chee Burm Shin & Kyung-Seok Min & Jongrak Choi & Ha-Young Lee, 2014. "Modeling of the Electrical and Thermal Behaviors of an Ultracapacitor," Energies, MDPI, vol. 7(12), pages 1-15, December.
    6. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    7. Liao, Rih-Neng & Chen, Tsai-Hsiang & Chang, Wei-Shiou, 2016. "Fast screening techniques and process for grid interconnection of wind-storage systems," Energy, Elsevier, vol. 115(P1), pages 770-780.
    8. Wang, Yujie & Sun, Zhendong & Li, Xiyun & Yang, Xiaoyu & Chen, Zonghai, 2019. "A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems," Energy, Elsevier, vol. 189(C).
    9. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    10. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Zizzo, G. & Beccali, M. & Bonomolo, M. & Di Pietra, B. & Ippolito, M.G. & La Cascia, D. & Leone, G. & Lo Brano, V. & Monteleone, F., 2017. "A feasibility study of some DSM enabling solutions in small islands: The case of Lampedusa," Energy, Elsevier, vol. 140(P1), pages 1030-1046.
    12. Michał Gocki & Agnieszka Jakubowska-Ciszek & Piotr Pruski, 2022. "Comparative Analysis of a New Class of Symmetric and Asymmetric Supercapacitors Constructed on the Basis of ITO Collectors," Energies, MDPI, vol. 16(1), pages 1-16, December.
    13. Yin, Xiu-xing & Lin, Yong-gang & Li, Wei & Gu, Ya-jing & Liu, Hong-wei & Lei, Peng-fei, 2015. "A novel fuzzy integral sliding mode current control strategy for maximizing wind power extraction and eliminating voltage harmonics," Energy, Elsevier, vol. 85(C), pages 677-686.
    14. Murashko, Kirill & Nevstrueva, Daria & Pihlajamäki, Arto & Koiranen, Tuomas & Pyrhönen, Juha, 2017. "Cellulose and activated carbon based flexible electrical double-layer capacitor electrode: Preparation and characterization," Energy, Elsevier, vol. 119(C), pages 435-441.
    15. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    16. Jinwoo Jeong & Heewon Shin & Hwachang Song & Byongjun Lee, 2018. "A Countermeasure for Preventing Flexibility Deficit under High-Level Penetration of Renewable Energies: A Robust Optimization Approach," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    17. Ghosh, Sampad & Withanage, Sajeevi S. & Chamlagain, Bhim & Khondaker, Saiful I. & Harish, Sivasankaran & Saha, Bidyut Baran, 2020. "Low pressure sulfurization and characterization of multilayer MoS2 for potential applications in supercapacitors," Energy, Elsevier, vol. 203(C).
    18. Al-Zareer, Maan & Dincer, Ibrahim & Rosen, Marc A., 2017. "Analysis and assessment of novel liquid air energy storage system with district heating and cooling capabilities," Energy, Elsevier, vol. 141(C), pages 792-802.
    19. Poolla, Chaitanya & Ishihara, Abraham K. & Milito, Rodolfo, 2019. "Designing near-optimal policies for energy management in a stochastic environment," Applied Energy, Elsevier, vol. 242(C), pages 1725-1737.
    20. Abu Hanifah, Rabiatuladawiyah & Toha, Siti Fauziah & Hassan, Mohd Khair & Ahmad, Salmiah, 2016. "Power reduction optimization with swarm based technique in electric power assist steering system," Energy, Elsevier, vol. 102(C), pages 444-452.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:78:y:2014:i:c:p:373-383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.