IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v18y2023ip159-166..html
   My bibliography  Save this article

Development of hybrid super-capacitor and lead-acid battery power storage systems

Author

Listed:
  • Guangyue Gu
  • Youliang Lao
  • Yaxiong Ji
  • Shasha Yuan
  • Haijing Liu
  • Peng Du

Abstract

Because the electricity storage of renewable energy is irregular, the battery in this system will be impacted by current. This will also have a negative impact on the battery life, increase the project cost and lead to pollute the environment. This study proposes a method to improve battery life: the hybrid energy storage system of super-capacitor and lead-acid battery is the key to solve these problems.

Suggested Citation

  • Guangyue Gu & Youliang Lao & Yaxiong Ji & Shasha Yuan & Haijing Liu & Peng Du, 2023. "Development of hybrid super-capacitor and lead-acid battery power storage systems," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 159-166.
  • Handle: RePEc:oup:ijlctc:v:18:y:2023:i::p:159-166.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctac140
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Di Wu & Peng Gao & Jichang Dong, 2012. "Impact Of Subsidy On Low-Rent Housing Lessees' Welfare In China," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 643-660.
    2. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    3. Kaldellis, J.K. & Zafirakis, D. & Kavadias, K., 2009. "Techno-economic comparison of energy storage systems for island autonomous electrical networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 378-392, February.
    4. Burke, Andrew, 2000. "Ultracapacitors: Why, How, and Where is the Technology," Institute of Transportation Studies, Working Paper Series qt9n905017, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hemmati, Reza & Saboori, Hedayat, 2016. "Emergence of hybrid energy storage systems in renewable energy and transport applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 11-23.
    2. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    3. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    4. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.
    5. Chatzivasileiadi, Aikaterini & Ampatzi, Eleni & Knight, Ian, 2013. "Characteristics of electrical energy storage technologies and their applications in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 814-830.
    6. Yucekaya, Ahmet, 2013. "The operational economics of compressed air energy storage systems under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 298-305.
    7. Jacob, Ammu Susanna & Banerjee, Rangan & Ghosh, Prakash C., 2018. "Sizing of hybrid energy storage system for a PV based microgrid through design space approach," Applied Energy, Elsevier, vol. 212(C), pages 640-653.
    8. Battke, Benedikt & Schmidt, Tobias S. & Grosspietsch, David & Hoffmann, Volker H., 2013. "A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 240-250.
    9. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1205-1230.
    10. Rahman, Md Mustafizur & Oni, Abayomi Olufemi & Gemechu, Eskinder & Kumar, Amit, 2021. "The development of techno-economic models for the assessment of utility-scale electro-chemical battery storage systems," Applied Energy, Elsevier, vol. 283(C).
    11. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    12. Rae, Callum & Bradley, Fiona, 2012. "Energy autonomy in sustainable communities—A review of key issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6497-6506.
    13. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    14. Wang, Yujie & Sun, Zhendong & Li, Xiyun & Yang, Xiaoyu & Chen, Zonghai, 2019. "A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems," Energy, Elsevier, vol. 189(C).
    15. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    16. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
    17. Dimou, Andreas & Vakalis, Stergios, 2022. "Technoeconomic analysis of green energy transitions in isolated grids: The case of Ai Stratis – Green Island," Renewable Energy, Elsevier, vol. 195(C), pages 66-75.
    18. Klein, Sharon J.W. & Coffey, Stephanie, 2016. "Building a sustainable energy future, one community at a time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 867-880.
    19. Michał Gocki & Agnieszka Jakubowska-Ciszek & Piotr Pruski, 2022. "Comparative Analysis of a New Class of Symmetric and Asymmetric Supercapacitors Constructed on the Basis of ITO Collectors," Energies, MDPI, vol. 16(1), pages 1-16, December.
    20. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:18:y:2023:i::p:159-166.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.