IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p1895-d1040602.html
   My bibliography  Save this article

Multi-Step Ahead Forecasting of the Energy Consumed by the Residential and Commercial Sectors in the United States Based on a Hybrid CNN-BiLSTM Model

Author

Listed:
  • Yifei Chen

    (School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Zhihan Fu

    (School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, China)

Abstract

COVID-19 has continuously influenced energy security and caused an enormous impact on human life and social activities due to the stay-at-home orders. After the Omicron wave, the economy and the energy system are gradually recovering, but uncertainty remains due to the virus mutations that could arise. Accurate forecasting of the energy consumed by the residential and commercial sectors is challenging for efficient emergency management and policy-making. Affected by geographical location and long-term evolution, the time series of the energy consumed by the residential and commercial sectors has prominent temporal and spatial characteristics. A hybrid model (CNN-BiLSTM) based on a convolution neural network (CNN) and bidirectional long short-term memory (BiLSTM) is proposed to extract the time series features, where the spatial features of the time series are captured by the CNN layer, and the temporal features are extracted by the BiLSTM layer. Then, the recursive multi-step ahead forecasting strategy is designed for multi-step ahead forecasting, and the grid search is employed to tune the model hyperparameters. Four cases of 24-step ahead forecasting of the energy consumed by the residential and commercial sectors in the United States are given to evaluate the performance of the proposed model, in comparison with 4 deep learning models and 6 popular machine learning models based on 12 evaluation metrics. Results show that CNN-BiLSTM outperforms all other models in four cases, with MAPEs ranging from 4.0034% to 5.4774%, improved from 0.1252% to 49.1410%, compared with other models, which is also about 5 times lower than that of the CNN and 5.9559% lower than the BiLSTM on average. It is evident that the proposed CNN-BiLSTM has improved the prediction accuracy of the CNN and BiLSTM and has great potential in forecasting the energy consumed by the residential and commercial sectors.

Suggested Citation

  • Yifei Chen & Zhihan Fu, 2023. "Multi-Step Ahead Forecasting of the Energy Consumed by the Residential and Commercial Sectors in the United States Based on a Hybrid CNN-BiLSTM Model," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1895-:d:1040602
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/1895/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/1895/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Potočnik, Primož & Soldo, Božidar & Šimunović, Goran & Šarić, Tomislav & Jeromen, Andrej & Govekar, Edvard, 2014. "Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia," Applied Energy, Elsevier, vol. 129(C), pages 94-103.
    2. Ahmad, Tanveer & Zhang, Dongdong & Huang, Chao, 2021. "Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications," Energy, Elsevier, vol. 231(C).
    3. Peng, Lu & Wang, Lin & Xia, De & Gao, Qinglu, 2022. "Effective energy consumption forecasting using empirical wavelet transform and long short-term memory," Energy, Elsevier, vol. 238(PB).
    4. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    5. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    6. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
    7. Zhu, L. & Li, M.S. & Wu, Q.H. & Jiang, L., 2015. "Short-term natural gas demand prediction based on support vector regression with false neighbours filtered," Energy, Elsevier, vol. 80(C), pages 428-436.
    8. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    9. Aras, Serkan & Hanifi Van, M., 2022. "An interpretable forecasting framework for energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 328(C).
    10. Ming Li & Wenqiang Du & Fuzhong Nian, 2014. "An Adaptive Particle Swarm Optimization Algorithm Based on Directed Weighted Complex Network," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-7, April.
    11. Li, Chuang & Li, Guojie & Wang, Keyou & Han, Bei, 2022. "A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems," Energy, Elsevier, vol. 259(C).
    12. Ye, Li & Dang, Yaoguo & Fang, Liping & Wang, Junjie, 2023. "A nonlinear interactive grey multivariable model based on dynamic compensation for forecasting the economy-energy-environment system," Applied Energy, Elsevier, vol. 331(C).
    13. Chaturvedi, Shobhit & Rajasekar, Elangovan & Natarajan, Sukumar & McCullen, Nick, 2022. "A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India," Energy Policy, Elsevier, vol. 168(C).
    14. Shabbir, Noman & Kütt, Lauri & Raja, Hadi A. & Jawad, Muhammad & Allik, Alo & Husev, Oleksandr, 2022. "Techno-economic analysis and energy forecasting study of domestic and commercial photovoltaic system installations in Estonia," Energy, Elsevier, vol. 253(C).
    15. Soldo, Božidar, 2012. "Forecasting natural gas consumption," Applied Energy, Elsevier, vol. 92(C), pages 26-37.
    16. Kim, H.J. & Kim, M.K., 2023. "A novel deep learning-based forecasting model optimized by heuristic algorithm for energy management of microgrid," Applied Energy, Elsevier, vol. 332(C).
    17. Niu, Dongxiao & Yu, Min & Sun, Lijie & Gao, Tian & Wang, Keke, 2022. "Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism," Applied Energy, Elsevier, vol. 313(C).
    18. He, Yongda & Lin, Boqiang, 2018. "Forecasting China's total energy demand and its structure using ADL-MIDAS model," Energy, Elsevier, vol. 151(C), pages 420-429.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuvaraj Natarajan & Sri Preethaa K. R. & Gitanjali Wadhwa & Young Choi & Zengshun Chen & Dong-Eun Lee & Yirong Mi, 2024. "Enhancing Building Energy Efficiency with IoT-Driven Hybrid Deep Learning Models for Accurate Energy Consumption Prediction," Sustainability, MDPI, vol. 16(5), pages 1-23, February.
    2. Ravnik, J. & Hriberšek, M., 2019. "A method for natural gas forecasting and preliminary allocation based on unique standard natural gas consumption profiles," Energy, Elsevier, vol. 180(C), pages 149-162.
    3. Mustafa Akpinar & Nejat Yumusak, 2016. "Year Ahead Demand Forecast of City Natural Gas Using Seasonal Time Series Methods," Energies, MDPI, vol. 9(9), pages 1-17, September.
    4. Su, Huai & Zio, Enrico & Zhang, Jinjun & Xu, Mingjing & Li, Xueyi & Zhang, Zongjie, 2019. "A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model," Energy, Elsevier, vol. 178(C), pages 585-597.
    5. Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Zhu, Bangzhu, 2020. "Modeling and forecasting the dynamics of the natural gas transmission network in Germany with the demand and supply balance constraint," Applied Energy, Elsevier, vol. 278(C).
    6. Lu, Hongfang & Ma, Xin & Azimi, Mohammadamin, 2020. "US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model," Energy, Elsevier, vol. 194(C).
    7. Wei, Nan & Yin, Lihua & Li, Chao & Liu, Jinyuan & Li, Changjun & Huang, Yuanyuan & Zeng, Fanhua, 2022. "Data complexity of daily natural gas consumption: Measurement and impact on forecasting performance," Energy, Elsevier, vol. 238(PC).
    8. Nan Wei & Changjun Li & Jiehao Duan & Jinyuan Liu & Fanhua Zeng, 2019. "Daily Natural Gas Load Forecasting Based on a Hybrid Deep Learning Model," Energies, MDPI, vol. 12(2), pages 1-15, January.
    9. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
    10. Hribar, Rok & Potočnik, Primož & Šilc, Jurij & Papa, Gregor, 2019. "A comparison of models for forecasting the residential natural gas demand of an urban area," Energy, Elsevier, vol. 167(C), pages 511-522.
    11. Tian, Zhirui & Liu, Weican & Jiang, Wenqian & Wu, Chenye, 2024. "CNNs-Transformer based day-ahead probabilistic load forecasting for weekends with limited data availability," Energy, Elsevier, vol. 293(C).
    12. Askari, S. & Montazerin, N. & Fazel Zarandi, M.H., 2016. "Gas networks simulation from disaggregation of low frequency nodal gas consumption," Energy, Elsevier, vol. 112(C), pages 1286-1298.
    13. Konstantinos Papageorgiou & Elpiniki I. Papageorgiou & Katarzyna Poczeta & Dionysis Bochtis & George Stamoulis, 2020. "Forecasting of Day-Ahead Natural Gas Consumption Demand in Greece Using Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 13(9), pages 1-32, May.
    14. Laib, Oussama & Khadir, Mohamed Tarek & Mihaylova, Lyudmila, 2019. "Toward efficient energy systems based on natural gas consumption prediction with LSTM Recurrent Neural Networks," Energy, Elsevier, vol. 177(C), pages 530-542.
    15. Wei, Nan & Yin, Lihua & Li, Chao & Li, Changjun & Chan, Christine & Zeng, Fanhua, 2021. "Forecasting the daily natural gas consumption with an accurate white-box model," Energy, Elsevier, vol. 232(C).
    16. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    17. Wei, Nan & Li, Changjun & Peng, Xiaolong & Li, Yang & Zeng, Fanhua, 2019. "Daily natural gas consumption forecasting via the application of a novel hybrid model," Applied Energy, Elsevier, vol. 250(C), pages 358-368.
    18. Jinyuan Liu & Shouxi Wang & Nan Wei & Yi Yang & Yihao Lv & Xu Wang & Fanhua Zeng, 2023. "An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting," Energies, MDPI, vol. 16(3), pages 1-14, January.
    19. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
    20. Beyca, Omer Faruk & Ervural, Beyzanur Cayir & Tatoglu, Ekrem & Ozuyar, Pinar Gokcin & Zaim, Selim, 2019. "Using machine learning tools for forecasting natural gas consumption in the province of Istanbul," Energy Economics, Elsevier, vol. 80(C), pages 937-949.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1895-:d:1040602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.