IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3246-d804922.html
   My bibliography  Save this article

Experimental Investigation on the Performance of an Aviation Piston Engine Fueled with Bio-Jet Fuel Prepared via Thermochemical Conversion of Triglyceride

Author

Listed:
  • Chen Zhang

    (Aero-Engine Thermal Environment and Structure Key Laboratory of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Lei Luo

    (Aero-Engine Thermal Environment and Structure Key Laboratory of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Wei Chen

    (Aero-Engine Thermal Environment and Structure Key Laboratory of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Fei Yang

    (COMAC Shanghai Aircraft Design and Research Institute, Shanghai 201210, China)

  • Gang Luo

    (Aero-Engine Thermal Environment and Structure Key Laboratory of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Junming Xu

    (Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210016, China)

Abstract

Bio-jet fuels prepared by the thermochemical conversion of triglyceride can be used as complete substitutes of jet fuels. A bio-jet fuel prepared as a substitute of the RP-3 jet fuel and the RP-3 jet fuel itself were, respectively, used to fuel a small aviation piston engine. The characteristic tests of the engine were carried out, and the performances of the power, economy, emissions, and heat release law of the engine fueled with the two fuels were analyzed. The feasibility of the bio-jet fuel as a substitute for the RP-3 jet fuel was proved by the experimental results, which show that when the engine is fueled with the bio-jet fuel, the power and economy performance do not deteriorate; however, the HC emissions increase at small and medium throttle openings, while at large throttle openings, the performances of power and economy decreases, the emissions of HC and NO x increase, and the CO emission decreases. The bio-jet fuel is more prone to spontaneous combustion than the RP-3 jet fuel, so knock combustion would be more likely to occur at large throttle openings, and large cooling air flux is required to cool the cylinder because spontaneous combustion would increase heat release.

Suggested Citation

  • Chen Zhang & Lei Luo & Wei Chen & Fei Yang & Gang Luo & Junming Xu, 2022. "Experimental Investigation on the Performance of an Aviation Piston Engine Fueled with Bio-Jet Fuel Prepared via Thermochemical Conversion of Triglyceride," Energies, MDPI, vol. 15(9), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3246-:d:804922
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3246/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3246/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xuan, Tiemin & Cao, Jiawei & He, Zhixia & Wang, Qian & Zhong, Wenjun & Leng, Xianyin & Li, Da & Shang, Weiwei, 2018. "A study of soot quantification in diesel flame with hydrogenated catalytic biodiesel in a constant volume combustion chamber," Energy, Elsevier, vol. 145(C), pages 691-699.
    2. Wang, Tiejun & Li, Kai & Liu, Qiying & Zhang, Qing & Qiu, Songbai & Long, Jinxing & Chen, Lungang & Ma, Longlong & Zhang, Qi, 2014. "Aviation fuel synthesis by catalytic conversion of biomass hydrolysate in aqueous phase," Applied Energy, Elsevier, vol. 136(C), pages 775-780.
    3. Muralidharan, K. & Vasudevan, D., 2011. "Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends," Applied Energy, Elsevier, vol. 88(11), pages 3959-3968.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    2. Li, Yuping & Huang, Xiaoming & Zhang, Qian & Chen, Lungang & Zhang, Xinghua & Wang, Tiejun & Ma, Longlong, 2015. "Hydrogenation and hydrodeoxygenation of difurfurylidene acetone to liquid alkanes over Raney Ni and the supported Pt catalysts," Applied Energy, Elsevier, vol. 160(C), pages 990-998.
    3. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Rafał Łukajtis & Piotr Rybarczyk & Karolina Kucharska & Donata Konopacka-Łyskawa & Edyta Słupek & Katarzyna Wychodnik & Marian Kamiński, 2018. "Optimization of Saccharification Conditions of Lignocellulosic Biomass under Alkaline Pre-Treatment and Enzymatic Hydrolysis," Energies, MDPI, vol. 11(4), pages 1-27, April.
    5. Zheng, Zunqing & Wang, XiaoFeng & Zhong, Xiaofan & Hu, Bin & Liu, Haifeng & Yao, Mingfa, 2016. "Experimental study on the combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2,5-dimethylfuran on a diesel engine," Energy, Elsevier, vol. 115(P1), pages 539-549.
    6. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.
    7. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
    8. E, Jiaqiang & Pham, MinhHieu & Deng, Yuanwang & Nguyen, Tuannghia & Duy, VinhNguyen & Le, DucHieu & Zuo, Wei & Peng, Qingguo & Zhang, Zhiqing, 2018. "Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends," Energy, Elsevier, vol. 149(C), pages 979-989.
    9. Jayabal, Ravikumar & Subramani, Sekar & Dillikannan, Damodharan & Devarajan, Yuvarajan & Thangavelu, Lakshmanan & Nedunchezhiyan, Mukilarasan & Kaliyaperumal, Gopal & De Poures, Melvin Victor, 2022. "Multi-objective optimization of performance and emission characteristics of a CRDI diesel engine fueled with sapota methyl ester/diesel blends," Energy, Elsevier, vol. 250(C).
    10. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    11. Arunkumar, M. & Kannan, M. & Murali, G., 2019. "Experimental studies on engine performance and emission characteristics using castor biodiesel as fuel in CI engine," Renewable Energy, Elsevier, vol. 131(C), pages 737-744.
    12. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    13. Chang, Yu-Cheng & Lee, Wen-Jhy & Wang, Lin-Chi & Yang, Hsi-Hsien & Cheng, Man-Ting & Lu, Jau-Huai & Tsai, Ying I. & Young, Li-Hao, 2014. "Effects of waste cooking oil-based biodiesel on the toxic organic pollutant emissions from a diesel engine," Applied Energy, Elsevier, vol. 113(C), pages 631-638.
    14. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    15. Kurji, H. & Valera-Medina, A. & Runyon, J. & Giles, A. & Pugh, D. & Marsh, R. & Cerone, N. & Zimbardi, F. & Valerio, V., 2016. "Combustion characteristics of biodiesel saturated with pyrolysis oil for power generation in gas turbines," Renewable Energy, Elsevier, vol. 99(C), pages 443-451.
    16. Li, J. & Yang, W.M. & An, H. & Chou, S.K., 2015. "Modeling on blend gasoline/diesel fuel combustion in a direct injection diesel engine," Applied Energy, Elsevier, vol. 160(C), pages 777-783.
    17. Haseeb Yaqoob & Yew Heng Teoh & Farooq Sher & Muhammad Umer Farooq & Muhammad Ahmad Jamil & Zareena Kausar & Noor Us Sabah & Muhammad Faizan Shah & Hafiz Zia Ur Rehman & Atiq Ur Rehman, 2021. "Potential of Waste Cooking Oil Biodiesel as Renewable Fuel in Combustion Engines: A Review," Energies, MDPI, vol. 14(9), pages 1-20, April.
    18. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    19. Xuan, Tiemin & Sun, Zhongcheng & EL-Seesy, Ahmed I. & Mi, Yonggang & Zhong, Wenjun & He, Zhixia & Wang, Qian & Sun, Jianbing & El-Batsh, Hesham M. & Cao, Jiawei, 2021. "An optical study on spray and combustion characteristics of ternary hydrogenated catalytic biodiesel/methanol/n-octanol blends; part П: Liquid length and in-flame soot," Energy, Elsevier, vol. 227(C).
    20. Zhang, Yanzhi & Li, Zilong & Tamilselvan, Pachiannan & Jiang, Chenxu & He, Zhixia & Zhong, Wenjun & Qian, Yong & Wang, Qian & Lu, Xingcai, 2019. "Experimental study of combustion and emission characteristics of gasoline compression ignition (GCI) engines fueled by gasoline-hydrogenated catalytic biodiesel blends," Energy, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3246-:d:804922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.