IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2840-d792993.html
   My bibliography  Save this article

Thermal Stratification and Temperature Variation in Horizontal Electric Water Heaters: A Characterisation Platform

Author

Listed:
  • Pieter D. van Schalkwyk

    (Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch 7600, South Africa)

  • Jacobus A. A. Engelbrecht

    (Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch 7600, South Africa)

  • Marthinus J. Booysen

    (Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch 7600, South Africa)

Abstract

Electric water heaters, which have the capacity to act as thermal energy storage, are well suited to demand management strategies in smart grid applications. However, finding the balance between managing power load, reducing thermal energy losses, user’s convenience, and bacterial growth control, requires accurate modelling of the internal thermal dynamics of the tank, including stratification. As a black box, this unknown is dependent on a multitude of environmental factors (e.g., ambient temperature and inlet temperature), water draw patterns, scheduling, set temperatures and orientation of the vessel. The latter affects the stratification and temperature variation inside the tank, and therefore has a direct bearing on the balancing act of demand management. Although this has been assessed inside vertically oriented tanks, what happens inside the horizontal variety—ubiquitous in developing countries—is currently left to the guesswork. In this paper, we present the development of an embedded hardware and software platform with which the temperature variations inside a horizontal water heater can be characterised under numerous environmental and usage conditions. The importance of doing so is highlighted by the preliminary results, which clearly show the expected substantial temperature variation along the vertical axis, but also show interesting phenomena along the longitudinal and transverse axes, for both static (no water draw) and dynamic (with water draw) conditions. We conclude by highlighting potential for further research.

Suggested Citation

  • Pieter D. van Schalkwyk & Jacobus A. A. Engelbrecht & Marthinus J. Booysen, 2022. "Thermal Stratification and Temperature Variation in Horizontal Electric Water Heaters: A Characterisation Platform," Energies, MDPI, vol. 15(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2840-:d:792993
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2840/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2840/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael J. Ritchie & Jacobus A. A. Engelbrecht & Marthinus J. Booysen, 2022. "Centrally Adapted Optimal Control of Multiple Electric Water Heaters," Energies, MDPI, vol. 15(4), pages 1-24, February.
    2. Baeten, Brecht & Confrey, Thomas & Pecceu, Sébastien & Rogiers, Frederik & Helsen, Lieve, 2016. "A validated model for mixing and buoyancy in stratified hot water storage tanks for use in building energy simulations," Applied Energy, Elsevier, vol. 172(C), pages 217-229.
    3. Castell, A. & Medrano, M. & Solé, C. & Cabeza, L.F., 2010. "Dimensionless numbers used to characterize stratification in water tanks for discharging at low flow rates," Renewable Energy, Elsevier, vol. 35(10), pages 2192-2199.
    4. María Gasque & Federico Ibáñez & Pablo González-Altozano, 2021. "Minimum Number of Experimental Data for the Thermal Characterization of a Hot Water Storage Tank," Energies, MDPI, vol. 14(16), pages 1-16, August.
    5. Armstrong, P. & Ager, D. & Thompson, I. & McCulloch, M., 2014. "Domestic hot water storage: Balancing thermal and sanitary performance," Energy Policy, Elsevier, vol. 68(C), pages 334-339.
    6. Yildiz, Baran & Bilbao, Jose I. & Roberts, Mike & Heslop, Simon & Dore, Jonathon & Bruce, Anna & MacGill, Iain & Egan, Renate J. & Sproul, Alistair B., 2021. "Analysis of electricity consumption and thermal storage of domestic electric water heating systems to utilize excess PV generation," Energy, Elsevier, vol. 235(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ritchie, M.J. & Engelbrecht, J.A.A. & Booysen, M.J., 2024. "Loadshedding-induced transients due to battery backup systems and electric water heaters," Applied Energy, Elsevier, vol. 367(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piyatida Trinuruk & Papangkorn Jenyongsak & Somchai Wongwises, 2022. "Comparative Study of Inlet Structure and Obstacle Plate Designs Affecting the Temperature Stratification Characteristics," Energies, MDPI, vol. 15(6), pages 1-25, March.
    2. De la Cruz-Loredo, Iván & Zinsmeister, Daniel & Licklederer, Thomas & Ugalde-Loo, Carlos E. & Morales, Daniel A. & Bastida, Héctor & Perić, Vedran S. & Saleem, Arslan, 2023. "Experimental validation of a hybrid 1-D multi-node model of a hot water thermal energy storage tank," Applied Energy, Elsevier, vol. 332(C).
    3. Ximo Masip & Emilio Navarro-Peris & José M. Corberán, 2020. "Influence of the Thermal Energy Storage Strategy on the Performance of a Booster Heat Pump for Domestic Hot Water Production System Based on the Use of Low Temperature Heat Source," Energies, MDPI, vol. 13(24), pages 1-24, December.
    4. Armstrong, P. & Ager, D. & Thompson, I. & McCulloch, M., 2014. "Improving the energy storage capability of hot water tanks through wall material specification," Energy, Elsevier, vol. 78(C), pages 128-140.
    5. María Gasque & Federico Ibáñez & Pablo González-Altozano, 2021. "Minimum Number of Experimental Data for the Thermal Characterization of a Hot Water Storage Tank," Energies, MDPI, vol. 14(16), pages 1-16, August.
    6. Wang, Yanqiu & Ji, Jie & Sun, Wei & Yuan, Weiqi & Cai, Jingyong & Guo, Chao & He, Wei, 2016. "Experiment and simulation study on the optimization of the PV direct-coupled solar water heating system," Energy, Elsevier, vol. 100(C), pages 154-166.
    7. Saloux, E. & Candanedo, J.A., 2019. "Modelling stratified thermal energy storage tanks using an advanced flowrate distribution of the received flow," Applied Energy, Elsevier, vol. 241(C), pages 34-45.
    8. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    9. Ahmet Feyzioglu, 2023. "A Study on the Control System of Electric Water Heaters for Decarbonization," Energies, MDPI, vol. 16(5), pages 1-12, March.
    10. Florian Schlosser & Ron-Hendrik Peesel & Henning Meschede & Matthias Philipp & Timothy G. Walmsley & Michael R. W. Walmsley & Martin J. Atkins, 2019. "Design of Robust Total Site Heat Recovery Loops via Monte Carlo Simulation," Energies, MDPI, vol. 12(5), pages 1-17, March.
    11. Wunvisa Tipasri & Amnart Suksri & Karthikeyan Velmurugan & Tanakorn Wongwuttanasatian, 2022. "Energy Management for an Air Conditioning System Using a Storage Device to Reduce the On-Peak Power Consumption," Energies, MDPI, vol. 15(23), pages 1-19, November.
    12. Armstrong, Peter M. & Uapipatanakul, Meg & Thompson, Ian & Ager, Duane & McCulloch, Malcolm, 2014. "Thermal and sanitary performance of domestic hot water cylinders: Conflicting requirements," Applied Energy, Elsevier, vol. 131(C), pages 171-179.
    13. Wanruo Lou & Lingai Luo & Yuchao Hua & Yilin Fan & Zhenyu Du, 2021. "A Review on the Performance Indicators and Influencing Factors for the Thermocline Thermal Energy Storage Systems," Energies, MDPI, vol. 14(24), pages 1-19, December.
    14. Untrau, Alix & Sochard, Sabine & Marias, Frédéric & Reneaume, Jean-Michel & Le Roux, Galo A.C. & Serra, Sylvain, 2023. "A fast and accurate 1-dimensional model for dynamic simulation and optimization of a stratified thermal energy storage," Applied Energy, Elsevier, vol. 333(C).
    15. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Moser, David & Pierro, Marco & Olabi, Abdul Ghani & Karimi, Nader & Nižetić, Sandro & Li, Larry K.B. & Doranehgard, Mohammad Hossein, 2023. "Techno-economic evaluation of a hybrid photovoltaic system with hot/cold water storage for poly-generation in a residential building," Applied Energy, Elsevier, vol. 331(C).
    16. Lee, Zachary E. & Zhang, K. Max, 2021. "Scalable identification and control of residential heat pumps: A minimal hardware approach," Applied Energy, Elsevier, vol. 286(C).
    17. Shan, Kui & Fan, Cheng & Wang, Jiayuan, 2019. "Model predictive control for thermal energy storage assisted large central cooling systems," Energy, Elsevier, vol. 179(C), pages 916-927.
    18. Mohammad Sajad Naghavi Sanjani & Mahyar Silakhori & Bee Chin Ang & Hendrik Simon Cornelis Metselaar & Sayed Mohammad Mousavi Gazafroudi & Younes Noorollahi, 2023. "Experimental Investigation on Solar Water Heater Integrated with Thermal Battery Using Phase Change Material and Porous Media," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    19. Ji, Jie & Wang, Yanqiu & Yuan, Weiqi & Sun, Wei & He, Wei & Guo, Chao, 2014. "Experimental comparison of two PV direct-coupled solar water heating systems with the traditional system," Applied Energy, Elsevier, vol. 136(C), pages 110-118.
    20. David Vérez & Emiliano Borri & Alicia Crespo & Gabriel Zsembinszki & Belal Dawoud & Luisa F. Cabeza, 2021. "Experimental Study of a Small-Size Vacuum Insulated Water Tank for Building Applications," Sustainability, MDPI, vol. 13(10), pages 1-11, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2840-:d:792993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.