IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2439-d1087318.html
   My bibliography  Save this article

A Study on the Control System of Electric Water Heaters for Decarbonization

Author

Listed:
  • Ahmet Feyzioglu

    (Department of Mechanical Engineering, Marmara University, Istanbul 34840, Turkey)

Abstract

Greenhouse gas (GHG) emissions have significantly increased in recent years as a result of population rise and the increase in the number of residences, with high levels of energy use in homes and household appliances. It is crucial to move the housing industry away from high-carbon sources and toward low-carbon sources in order to minimize greenhouse gas emissions as a precaution. One of the most crucial systems that needs to be provided in order to achieve energy efficiency is the electric water heater (EWH), as they rank among the top electricity consumers. In this study, a double-tank EWH model was developed and simulated at various tank sizes (100 L, 200 L, 300 L and 400 L) and power ratios (1 kW, 2 kW, 3kW and 4 kW) in order to demonstrate energy efficiency. To obtain information for the simulation analysis of the tanks, the hourly water usage of 25 houses was measured. The single-tank and the double-tank models created for this study were both run in the Matlab/Simulink environment with an on-off controller applied, and their energy consumption was compared. Amounts were also determined based on how much energy both tanks consumed. It has been noted that the amount of GHG emissions is also reduced because the double tank uses less energy than the single tank does. The simulation showed that compared to the single tank, the dual tank produced 46.62% less GHG emissions at 45 W power and 47.51% less GHG emissions at 80 W.

Suggested Citation

  • Ahmet Feyzioglu, 2023. "A Study on the Control System of Electric Water Heaters for Decarbonization," Energies, MDPI, vol. 16(5), pages 1-12, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2439-:d:1087318
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2439/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2439/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesco Mancini & Benedetto Nastasi, 2019. "Energy Retrofitting Effects on the Energy Flexibility of Dwellings," Energies, MDPI, vol. 12(14), pages 1-19, July.
    2. Thomaßen, Georg & Kavvadias, Konstantinos & Jiménez Navarro, Juan Pablo, 2021. "The decarbonisation of the EU heating sector through electrification: A parametric analysis," Energy Policy, Elsevier, vol. 148(PA).
    3. Keinath, Christopher M. & Garimella, Srinivas, 2017. "An energy and cost comparison of residential water heating technologies," Energy, Elsevier, vol. 128(C), pages 626-633.
    4. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    5. Leibowicz, Benjamin D. & Lanham, Christopher M. & Brozynski, Max T. & Vázquez-Canteli, José R. & Castejón, Nicolás Castillo & Nagy, Zoltan, 2018. "Optimal decarbonization pathways for urban residential building energy services," Applied Energy, Elsevier, vol. 230(C), pages 1311-1325.
    6. Saidur, R. & Masjuki, H.H. & Jamaluddin, M.Y. & Ahmed, S., 2007. "Energy and associated greenhouse gas emissions from household appliances in Malaysia," Energy Policy, Elsevier, vol. 35(3), pages 1648-1657, March.
    7. Yildiz, Baran & Bilbao, Jose I. & Roberts, Mike & Heslop, Simon & Dore, Jonathon & Bruce, Anna & MacGill, Iain & Egan, Renate J. & Sproul, Alistair B., 2021. "Analysis of electricity consumption and thermal storage of domestic electric water heating systems to utilize excess PV generation," Energy, Elsevier, vol. 235(C).
    8. Tarroja, Brian & Chiang, Felicia & AghaKouchak, Amir & Samuelsen, Scott & Raghavan, Shuba V. & Wei, Max & Sun, Kaiyu & Hong, Tianzhen, 2018. "Translating climate change and heating system electrification impacts on building energy use to future greenhouse gas emissions and electric grid capacity requirements in California," Applied Energy, Elsevier, vol. 225(C), pages 522-534.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo Carnero & Pilar Calatayud, 2021. "A Parametric Analysis for Short-Term Residential Electrification with Electric Water Tanks. The Case of Spain," Sustainability, MDPI, vol. 13(21), pages 1-26, November.
    2. Earle, Lieko & Maguire, Jeff & Munankarmi, Prateek & Roberts, David, 2023. "The impact of energy-efficiency upgrades and other distributed energy resources on a residential neighborhood-scale electrification retrofit," Applied Energy, Elsevier, vol. 329(C).
    3. Ryan, Erich & McDaniel, Benjamin & Kosanovic, Dragoljub, 2022. "Application of thermal energy storage with electrified heating and cooling in a cold climate," Applied Energy, Elsevier, vol. 328(C).
    4. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    5. Mata, Érika & Wanemark, Joel & Nik, Vahid M. & Sasic Kalagasidis, Angela, 2019. "Economic feasibility of building retrofitting mitigation potentials: Climate change uncertainties for Swedish cities," Applied Energy, Elsevier, vol. 242(C), pages 1022-1035.
    6. Yan, Ran & Ma, Minda & Zhou, Nan & Feng, Wei & Xiang, Xiwang & Mao, Chao, 2023. "Towards COP27: Decarbonization patterns of residential building in China and India," Applied Energy, Elsevier, vol. 352(C).
    7. Lee, Zachary E. & Max Zhang, K., 2022. "Unintended consequences of smart thermostats in the transition to electrified heating," Applied Energy, Elsevier, vol. 322(C).
    8. Pierluigi Morano & Francesco Tajani & Felicia Di Liddo & Paola Amoruso, 2024. "A Feasibility Analysis of Energy Retrofit Initiatives Aimed at the Existing Property Assets Decarbonisation," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    9. Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
    10. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
    11. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    12. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    13. Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.
    14. Anna Życzyńska & Dariusz Majerek & Zbigniew Suchorab & Agnieszka Żelazna & Václav Kočí & Robert Černý, 2021. "Improving the Energy Performance of Public Buildings Equipped with Individual Gas Boilers Due to Thermal Retrofitting," Energies, MDPI, vol. 14(6), pages 1-19, March.
    15. Piotr Gradziuk & Aleksandra Siudek & Anna M. Klepacka & Wojciech J. Florkowski & Anna Trocewicz & Iryna Skorokhod, 2022. "Heat Pump Installation in Public Buildings: Savings and Environmental Benefits in Underserved Rural Areas," Energies, MDPI, vol. 15(21), pages 1-16, October.
    16. John Curtis & Brian Stanley, 2016. "Analysing Residential Energy Demand: An Error Correction Demand System Approach for Ireland," The Economic and Social Review, Economic and Social Studies, vol. 47(2), pages 185-211.
    17. Omar Shafqat & Elena Malakhtka & Nina Chrobot & Per Lundqvist, 2021. "End Use Energy Services Framework Co-Creation with Multiple Stakeholders—A Living Lab-Based Case Study," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    18. Wei Yu & Baizhan Li & Yarong Lei & Meng Liu, 2011. "Analysis of a Residential Building Energy Consumption Demand Model," Energies, MDPI, vol. 4(3), pages 1-13, March.
    19. Michael O. Dioha & Nnaemeka Vincent Emodi, 2019. "Investigating the Impacts of Energy Access Scenarios in the Nigerian Household Sector by 2030," Resources, MDPI, vol. 8(3), pages 1-18, July.
    20. Tom Elliott & Joachim Geske & Richard Green, 2022. "Business Models for Active Buildings," Energies, MDPI, vol. 15(19), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2439-:d:1087318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.