IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1763-d342196.html
   My bibliography  Save this article

Noise Reduction Power Stealing Detection Model Based on Self-Balanced Data Set

Author

Listed:
  • Haiqing Liu

    (School of Control and Computer, North China Electric Power University, Beijing 102206, China)

  • Zhiqiao Li

    (School of Control and Computer, North China Electric Power University, Beijing 102206, China)

  • Yuancheng Li

    (School of Control and Computer, North China Electric Power University, Beijing 102206, China)

Abstract

In recent years, various types of power theft incidents have occurred frequently, and the training of the power-stealing detection model is susceptible to the influence of the imbalanced data set and the data noise, which leads to errors in power-stealing detection. Therefore, a power-stealing detection model is proposed, which is based on Improved Conditional Generation Adversarial Network (CWGAN), Stacked Convolution Noise Reduction Autoencoder (SCDAE) and Lightweight Gradient Boosting Decision Machine (LightGBM). The model performs Generation- Adversarial operations on the original unbalanced power consumption data to achieve the balance of electricity data, and avoids the interference of the imbalanced data set on classifier training. In addition, the convolution method is used to stack the noise reduction auto-encoder to achieve dimension reduction of power consumption data, extract data features and reduce the impact of random noise. Finally, LightGBM is used for power theft detection. The experiments show that CWGAN can effectively balance the distribution of power consumption data. Comparing the detection indicators of the power-stealing model with various advanced power-stealing models on the same data set, it is finally proved that the proposed model is superior to other models in the detection of power stealing.

Suggested Citation

  • Haiqing Liu & Zhiqiao Li & Yuancheng Li, 2020. "Noise Reduction Power Stealing Detection Model Based on Self-Balanced Data Set," Energies, MDPI, vol. 13(7), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1763-:d:342196
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1763/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1763/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pamir & Nadeem Javaid & Saher Javaid & Muhammad Asif & Muhammad Umar Javed & Adamu Sani Yahaya & Sheraz Aslam, 2022. "Synthetic Theft Attacks and Long Short Term Memory-Based Preprocessing for Electricity Theft Detection Using Gated Recurrent Unit," Energies, MDPI, vol. 15(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1763-:d:342196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.