IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2701-d788201.html
   My bibliography  Save this article

Location and Technical Requirements for Photovoltaic Power Stations in Poland

Author

Listed:
  • Krystyna Kurowska

    (Department of Spatial Analysis and the Real Estate Market, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 15, 10-720 Olsztyn, Poland)

  • Hubert Kryszk

    (Department of Spatial Analysis and the Real Estate Market, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 15, 10-720 Olsztyn, Poland)

  • Stanisław Bielski

    (Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Oczapowskiego 8, 10-718 Olsztyn, Poland)

Abstract

The objective of Poland’s energy policy is to guarantee energy security while enhancing economic competitiveness and energy efficiency, thus minimizing the power sector’s environmental impact and optimizing the use of energy resources in the country. Poland is not the only European country to rely on coal for power generation. Historical factors and large coal deposits act as natural barriers to increasing the share of renewable energy in the Polish power sector. Yet, today, environmental concerns and climate change are prompting many countries to move away from fossil fuels. Renewable energy sources, such as solar and wind energy, are an alternative to traditional energy generated from fossil fuels. However, investors developing solar and wind farms in Poland encounter numerous problems at each stage of the project. These difficulties are associated mainly with the location, technical requirements, infrastructure and formal and legal documents. This study aimed to identify the key factors that influence the development of photovoltaic power stations in Poland, with special emphasis on the choice of location and technical aspects of the investment process. The demand for clean energy and the renewable energy prospects for Poland are discussed based on the example of solar farms. Sixty-seven prospective farm locations were analyzed, and the results of the analysis were used to identify the main barriers and opportunities for renewable energy development in Poland. The option of connecting solar farms to the existing power grid was also examined. This study demonstrates that the development of solar farms in Poland is inhibited mainly by technical barriers, in particular the lack of options for connecting farms to the power grid, as well as the absence of support mechanisms and dedicated legislative solutions, rather than environmental obstacles.

Suggested Citation

  • Krystyna Kurowska & Hubert Kryszk & Stanisław Bielski, 2022. "Location and Technical Requirements for Photovoltaic Power Stations in Poland," Energies, MDPI, vol. 15(7), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2701-:d:788201
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2701/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2701/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Federica Cucchiella & Alessia Condemi & Marianna Rotilio & Valeria Annibaldi, 2021. "Energy Transitions in Western European Countries: Regulation Comparative Analysis," Energies, MDPI, vol. 14(13), pages 1-23, July.
    2. Rediske, Graciele & Siluk, Julio Cezar M. & Michels, Leandro & Rigo, Paula D. & Rosa, Carmen B. & Cugler, Gilberto, 2020. "Multi-criteria decision-making model for assessment of large photovoltaic farms in Brazil," Energy, Elsevier, vol. 197(C).
    3. Huang, Ping & Negro, Simona O. & Hekkert, Marko P. & Bi, Kexin, 2016. "How China became a leader in solar PV: An innovation system analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 777-789.
    4. Benghanem, M., 2011. "Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia," Applied Energy, Elsevier, vol. 88(4), pages 1427-1433, April.
    5. Samar Fatima & Verner Püvi & Matti Lehtonen, 2020. "Review on the PV Hosting Capacity in Distribution Networks," Energies, MDPI, vol. 13(18), pages 1-34, September.
    6. Renata Marks-Bielska & Stanisław Bielski & Katarzyna Pik & Krystyna Kurowska, 2020. "The Importance of Renewable Energy Sources in Poland’s Energy Mix," Energies, MDPI, vol. 13(18), pages 1-23, September.
    7. Stanisław Bielski & Anna Zielińska-Chmielewska & Renata Marks-Bielska, 2021. "Use of Environmental Management Systems and Renewable Energy Sources in Selected Food Processing Enterprises in Poland," Energies, MDPI, vol. 14(11), pages 1-16, May.
    8. Haque, M. Mejbaul & Wolfs, Peter, 2016. "A review of high PV penetrations in LV distribution networks: Present status, impacts and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1195-1208.
    9. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2016. "The effect of latitude on the performance of different solar trackers in Europe and Africa," Applied Energy, Elsevier, vol. 177(C), pages 896-906.
    10. Byrnes, Liam & Brown, Colin & Foster, John & Wagner, Liam D., 2013. "Australian renewable energy policy: Barriers and challenges," Renewable Energy, Elsevier, vol. 60(C), pages 711-721.
    11. Tiago E. C. de Oliveira & Pedro M. S. Carvalho & Paulo F. Ribeiro & Benedito D. Bonatto, 2018. "PV Hosting Capacity Dependence on Harmonic Voltage Distortion in Low-Voltage Grids: Model Validation with Experimental Data," Energies, MDPI, vol. 11(2), pages 1-13, February.
    12. Grau, Thilo & Huo, Molin & Neuhoff, Karsten, 2012. "Survey of photovoltaic industry and policy in Germany and China," Energy Policy, Elsevier, vol. 51(C), pages 20-37.
    13. Allcott, Hunt & Mullainathan, Sendhil & Taubinsky, Dmitry, 2014. "Energy policy with externalities and internalities," Journal of Public Economics, Elsevier, vol. 112(C), pages 72-88.
    14. Ferreira, Agmar & Kunh, Sheila S. & Fagnani, Kátia C. & De Souza, Tiago A. & Tonezer, Camila & Dos Santos, Geocris Rodrigues & Coimbra-Araújo, Carlos H., 2018. "Economic overview of the use and production of photovoltaic solar energy in brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 181-191.
    15. Pacesila, Mihaela & Burcea, Stefan Gabriel & Colesca, Sofia Elena, 2016. "Analysis of renewable energies in European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 156-170.
    16. Pereira da Silva, Patrícia & Dantas, Guilherme & Pereira, Guillermo Ivan & Câmara, Lorrane & De Castro, Nivalde J., 2019. "Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 30-39.
    17. Byuk-Keun Jo & Gilsoo Jang, 2019. "An Evaluation of the Effect on the Expansion of Photovoltaic Power Generation According to Renewable Energy Certificates on Energy Storage Systems: A Case Study of the Korean Renewable Energy Market," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    18. Valkila, Noora & Saari, Arto, 2010. "Urgent need for new approach to energy policy: The case of Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2068-2076, September.
    19. Moosavian, S.M. & Rahim, N.A. & Selvaraj, J. & Solangi, K.H., 2013. "Energy policy to promote photovoltaic generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 44-58.
    20. Jarosław Brodny & Magdalena Tutak, 2020. "Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources," Energies, MDPI, vol. 13(4), pages 1-37, February.
    21. Renata Marks-Bielska & Stanisław Bielski & Anastasija Novikova & Kęstutis Romaneckas, 2019. "Straw Stocks as a Source of Renewable Energy. A Case Study of a District in Poland," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    22. Stanisław Bielski & Renata Marks-Bielska & Anna Zielińska-Chmielewska & Kęstutis Romaneckas & Egidijus Šarauskis, 2021. "Importance of Agriculture in Creating Energy Security—A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-20, April.
    23. Małgorzata Rataj & Justyna Berniak-Woźny & Marlena Plebańska, 2021. "Poland as the EU Leader in Terms of Photovoltaic Market Growth Dynamics—Behind the Scenes," Energies, MDPI, vol. 14(21), pages 1-19, October.
    24. Mundo-Hernández, Julia & de Celis Alonso, Benito & Hernández-Álvarez, Julia & de Celis-Carrillo, Benito, 2014. "An overview of solar photovoltaic energy in Mexico and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 639-649.
    25. Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
    26. Koster, Daniel & Minette, Frank & Braun, Christian & O'Nagy, Oliver, 2019. "Short-term and regionalized photovoltaic power forecasting, enhanced by reference systems, on the example of Luxembourg," Renewable Energy, Elsevier, vol. 132(C), pages 455-470.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Łowczowski & Jacek Roman, 2023. "Techno-Economic Analysis of Alternative PV Orientations in Poland by Rescaling Real PV Profiles," Energies, MDPI, vol. 16(17), pages 1-18, August.
    2. Krzysztof Dmytrów & Beata Bieszk-Stolorz & Joanna Landmesser-Rusek, 2022. "Sustainable Energy in European Countries: Analysis of Sustainable Development Goal 7 Using the Dynamic Time Warping Method," Energies, MDPI, vol. 15(20), pages 1-17, October.
    3. Filip Czepło & Piotr F. Borowski, 2024. "Innovation Solution in Photovoltaic Sector," Energies, MDPI, vol. 17(1), pages 1-19, January.
    4. Katarzyna Stala-Szlugaj & Piotr Olczak & Jaroslaw Kulpa & Maciej Soltysik, 2024. "Methodology for Selecting a Location for a Photovoltaic Farm on the Example of Poland," Energies, MDPI, vol. 17(10), pages 1-14, May.
    5. Anna Manowska & Andrzej Nowrot, 2022. "Solar Farms as the Only Power Source for the Entire Country," Energies, MDPI, vol. 15(14), pages 1-15, July.
    6. Hubert Kryszk & Krystyna Kurowska & Renata Marks-Bielska & Stanisław Bielski & Bartłomiej Eźlakowski, 2023. "Barriers and Prospects for the Development of Renewable Energy Sources in Poland during the Energy Crisis," Energies, MDPI, vol. 16(4), pages 1-17, February.
    7. Katarzyna Kocur-Bera, 2024. "Are Local Commune Governments Interested in the Development of Photovoltaics in Their Area? An Inside View of Poland," Energies, MDPI, vol. 17(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylwia Roszkowska & Natalia Szubska-Włodarczyk, 2022. "What are the barriers to agricultural biomass market development? The case of Poland," Environment Systems and Decisions, Springer, vol. 42(1), pages 75-84, March.
    2. Federica Cucchiella & Alessia Condemi & Marianna Rotilio & Valeria Annibaldi, 2021. "Energy Transitions in Western European Countries: Regulation Comparative Analysis," Energies, MDPI, vol. 14(13), pages 1-23, July.
    3. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    4. Binz, Christian & Gosens, Jorrit & Hansen, Teis & Hansen, Ulrich Elmer, 2017. "Toward Technology-Sensitive Catching-Up Policies: Insights from Renewable Energy in China," World Development, Elsevier, vol. 96(C), pages 418-437.
    5. Aldona Standar & Agnieszka Kozera & Łukasz Satoła, 2021. "The Importance of Local Investments Co-Financed by the European Union in the Field of Renewable Energy Sources in Rural Areas of Poland," Energies, MDPI, vol. 14(2), pages 1-23, January.
    6. Stanisław Bielski & Renata Marks-Bielska & Anna Zielińska-Chmielewska & Kęstutis Romaneckas & Egidijus Šarauskis, 2021. "Importance of Agriculture in Creating Energy Security—A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-20, April.
    7. Gönül, Ömer & Yazar, Fatih & Duman, A. Can & Güler, Önder, 2022. "A comparative techno-economic assessment of manually adjustable tilt mechanisms and automatic solar trackers for behind-the-meter PV applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Muhammad Umar Afzaal & Intisar Ali Sajjad & Ahmed Bilal Awan & Kashif Nisar Paracha & Muhammad Faisal Nadeem Khan & Abdul Rauf Bhatti & Muhammad Zubair & Waqas ur Rehman & Salman Amin & Shaikh Saaqib , 2020. "Probabilistic Generation Model of Solar Irradiance for Grid Connected Photovoltaic Systems Using Weibull Distribution," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    9. Mohammad K. Najjar & Eduardo Linhares Qualharini & Ahmed W. A. Hammad & Dieter Boer & Assed Haddad, 2019. "Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    10. Mariusz Jerzy Stolarski & Paweł Dudziec & Michał Krzyżaniak & Ewelina Olba-Zięty, 2021. "Solid Biomass Energy Potential as a Development Opportunity for Rural Communities," Energies, MDPI, vol. 14(12), pages 1-21, June.
    11. Kejia Yang & Johan Schot & Bernhard Truffer, 2020. "Shaping the Directionality of Sustainability Transitions: The Diverging Development Patterns of Solar PV in Two Chinese Provinces," SPRU Working Paper Series 2020-14, SPRU - Science Policy Research Unit, University of Sussex Business School.
    12. Sandro Sacchelli & Valerii Havrysh & Antonina Kalinichenko & Dariusz Suszanowicz, 2022. "Ground-Mounted Photovoltaic and Crop Cultivation: A Comparative Analysis," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    13. Ding, H. & Zhou, D.Q. & Liu, G.Q. & Zhou, P., 2020. "Cost reduction or electricity penetration: Government R&D-induced PV development and future policy schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    14. Zhang, Haoran & Yan, Jinyue & Yu, Qing & Obersteiner, Michael & Li, Wenjing & Chen, Jinyu & Zhang, Qiong & Jiang, Mingkun & Wallin, Fredrik & Song, Xuan & Wu, Jiang & Wang, Xin & Shibasaki, Ryosuke, 2021. "1.6 Million transactions replicate distributed PV market slowdown by COVID-19 lockdown," Applied Energy, Elsevier, vol. 283(C).
    15. Grzegorz Lew & Beata Sadowska & Katarzyna Chudy-Laskowska & Grzegorz Zimon & Magdalena Wójcik-Jurkiewicz, 2021. "Influence of Photovoltaic Development on Decarbonization of Power Generation—Example of Poland," Energies, MDPI, vol. 14(22), pages 1-20, November.
    16. Hwang, Hyunkyeong & Yoon, Ahyun & Yoon, Yongtae & Moon, Seungil, 2023. "Demand response of HVAC systems for hosting capacity improvement in distribution networks: A comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    17. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2021. "Macroeconomic Efficiency of Photovoltaic Energy Production in Polish Farms," Energies, MDPI, vol. 14(18), pages 1-19, September.
    18. Elżbieta Jadwiga Szymańska & Maria Kubacka & Joanna Woźniak & Jan Polaszczyk, 2022. "Analysis of Residential Buildings in Poland for Potential Energy Renovation toward Zero-Emission Construction," Energies, MDPI, vol. 15(24), pages 1-24, December.
    19. Ferreira, Agmar & Kunh, Sheila S. & Fagnani, Kátia C. & De Souza, Tiago A. & Tonezer, Camila & Dos Santos, Geocris Rodrigues & Coimbra-Araújo, Carlos H., 2018. "Economic overview of the use and production of photovoltaic solar energy in brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 181-191.
    20. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Agnieszka Mazur-Dudzińska, 2021. "The Situation of Households on the Energy Market in the European Union: Consumption, Prices, and Renewable Energy," Energies, MDPI, vol. 14(19), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2701-:d:788201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.