IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6987-d663948.html
   My bibliography  Save this article

Poland as the EU Leader in Terms of Photovoltaic Market Growth Dynamics—Behind the Scenes

Author

Listed:
  • Małgorzata Rataj

    (Department of Cognitive Science and Mathematical Modeling, University of Information Technology and Management, 35-225 Rzeszow, Poland)

  • Justyna Berniak-Woźny

    (Department of Management, University of Information Technology and Management, 35-225 Rzeszow, Poland)

  • Marlena Plebańska

    (Department of Management, Vistula University, 02-787 Warsaw, Poland)

Abstract

The growing climate crisis forces the adoption of radical steps to neutralize our impact on the environment, despite the constantly growing demand for energy. Poland, which according to forecasts will not reach the EU target of 15% share of renewable energy sources by 2030, is nevertheless a leader in the EU in terms of the growth dynamics of the photovoltaic market. The aim of this article is to answer the question as to what caused such a huge interest in solar energy. In this article, the authors focus solely on residential installations. The dataset for the analysis was constructed on readily available national data on photovoltaics showing the key characteristics of the country and prosumers. According to this research, the prosumer’s profile shows that home photovoltaics are most interesting for the poorest households in rural municipalities, in regions with the highest unemployment rate, and among citizens of pre-retirement age. The decision to invest in photovoltaics is also influenced by the availability of subsidies and the price level of energy bills. On the other hand, no impact was found on insolation and environmental pollution. The results of the study will allow for a more conscious shaping of energy policy at the EU, national and regional levels.

Suggested Citation

  • Małgorzata Rataj & Justyna Berniak-Woźny & Marlena Plebańska, 2021. "Poland as the EU Leader in Terms of Photovoltaic Market Growth Dynamics—Behind the Scenes," Energies, MDPI, vol. 14(21), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6987-:d:663948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6987/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6987/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ferroni, Ferruccio & Hopkirk, Robert J., 2016. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation," Energy Policy, Elsevier, vol. 94(C), pages 336-344.
    2. Abbas Mardani & Dalia Streimikiene & Mehrbakhsh Nilashi & Daniel Arias Aranda & Nanthakumar Loganathan & Ahmad Jusoh, 2018. "Energy Consumption, Economic Growth, and CO 2 Emissions in G20 Countries: Application of Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 11(10), pages 1-15, October.
    3. Magdalena Grębosz-Krawczyk & Agnieszka Zakrzewska-Bielawska & Beata Glinka & Aldona Glińska-Neweś, 2021. "Why Do Consumers Choose Photovoltaic Panels? Identification of the Factors Influencing Consumers’ Choice Behavior regarding Photovoltaic Panel Installations," Energies, MDPI, vol. 14(9), pages 1-20, May.
    4. Michał Bernard Pietrzak & Bartłomiej Igliński & Wojciech Kujawski & Paweł Iwański, 2021. "Energy Transition in Poland—Assessment of the Renewable Energy Sector," Energies, MDPI, vol. 14(8), pages 1-23, April.
    5. Klepacka, Anna M., 2019. "Significance Of Renewable Energy Sources In Sustainable Development," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2019(1).
    6. Brauers, Hanna & Oei, Pao-Yu, 2020. "The political economy of coal in Poland: Drivers and barriers for a shift away from fossil fuels," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 144.
    7. Agata Zdyb & Slawomir Gulkowski, 2020. "Performance Assessment of Four Different Photovoltaic Technologies in Poland," Energies, MDPI, vol. 13(1), pages 1-17, January.
    8. Stanisław Bielski & Renata Marks-Bielska & Anna Zielińska-Chmielewska & Kęstutis Romaneckas & Egidijus Šarauskis, 2021. "Importance of Agriculture in Creating Energy Security—A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-20, April.
    9. Ryszard Kata & Kazimierz Cyran & Sławomir Dybka & Małgorzata Lechwar & Rafał Pitera, 2021. "Economic and Social Aspects of Using Energy from PV and Solar Installations in Farmers’ Households in the Podkarpackie Region," Energies, MDPI, vol. 14(11), pages 1-21, May.
    10. Martinopoulos, Georgios, 2020. "Are rooftop photovoltaic systems a sustainable solution for Europe? A life cycle impact assessment and cost analysis," Applied Energy, Elsevier, vol. 257(C).
    11. Myojo, Satoshi & Ohashi, Hiroshi, 2018. "Effects of consumer subsidies for renewable energy on industry growth and social welfare: The case of solar photovoltaic systems in Japan," Journal of the Japanese and International Economies, Elsevier, vol. 48(C), pages 55-67.
    12. Robert Kuceba & Grzegorz Chmielarz & Marcin Soltysiak, 2021. "Vital Factors Stimulating Development and Competitiveness of Design and Construction Enterprises of Photovoltaic Farms," Energies, MDPI, vol. 14(12), pages 1-15, June.
    13. Roman Vavrek & Jana Chovancová, 2020. "Energy Performance of the European Union Countries in Terms of Reaching the European Energy Union Objectives," Energies, MDPI, vol. 13(20), pages 1-16, October.
    14. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Weißbach, D. & Ruprecht, G. & Huke, A. & Czerski, K. & Gottlieb, S. & Hussein, A., 2013. "Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants," Energy, Elsevier, vol. 52(C), pages 210-221.
    16. Veum, Karina & Bauknecht, Dierk, 2019. "How to reach the EU renewables target by 2030? An analysis of the governance framework," Energy Policy, Elsevier, vol. 127(C), pages 299-307.
    17. Brauers, Hanna & Oei, Pao-Yu, 2020. "The political economy of coal in Poland: Drivers and barriers for a shift away from fossil fuels," Energy Policy, Elsevier, vol. 144(C).
    18. Bernard Knutel & Anna Pierzyńska & Marcin Dębowski & Przemysław Bukowski & Arkadiusz Dyjakon, 2020. "Assessment of Energy Storage from Photovoltaic Installations in Poland Using Batteries or Hydrogen," Energies, MDPI, vol. 13(15), pages 1-16, August.
    19. Renata Gnatowska & Elżbieta Moryń-Kucharczyk, 2021. "The Place of Photovoltaics in Poland’s Energy Mix," Energies, MDPI, vol. 14(5), pages 1-12, March.
    20. Nicolae Marinescu, 2020. "Changes in Renewable Energy Policy and Their Implications: The Case of Romanian Producers," Energies, MDPI, vol. 13(24), pages 1-16, December.
    21. Martinopoulos, G. & Tsalikis, G., 2018. "Diffusion and adoption of solar energy conversion systems – The case of Greece," Energy, Elsevier, vol. 144(C), pages 800-807.
    22. Mayis G. Gulaliyev & Elchin R. Mustafayev & Gulsura Y. Mehdiyeva, 2020. "Assessment of Solar Energy Potential and Its Ecological-Economic Efficiency: Azerbaijan Case," Sustainability, MDPI, vol. 12(3), pages 1-11, February.
    23. Aldona Standar & Agnieszka Kozera & Łukasz Satoła, 2021. "The Importance of Local Investments Co-Financed by the European Union in the Field of Renewable Energy Sources in Rural Areas of Poland," Energies, MDPI, vol. 14(2), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krystyna Kurowska & Hubert Kryszk & Stanisław Bielski, 2022. "Location and Technical Requirements for Photovoltaic Power Stations in Poland," Energies, MDPI, vol. 15(7), pages 1-16, April.
    2. Bartłomiej Igliński & Michał Bernard Pietrzak & Urszula Kiełkowska & Mateusz Skrzatek & Artur Gajdos & Anas Zyadin & Karthikeyan Natarajan, 2022. "How to Meet the Green Deal Objectives—Is It Possible to Obtain 100% RES at the Regional Level in the EU?," Energies, MDPI, vol. 15(6), pages 1-24, March.
    3. Sandro Sacchelli & Valerii Havrysh & Antonina Kalinichenko & Dariusz Suszanowicz, 2022. "Ground-Mounted Photovoltaic and Crop Cultivation: A Comparative Analysis," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    4. Maciej Sołtysik & Mariusz Kozakiewicz & Jakub Jasiński, 2022. "Improvement of Operating Efficiency of Energy Cooperatives with the Use of “Crypto-Coin Mining”," Energies, MDPI, vol. 15(21), pages 1-25, October.
    5. Agnieszka Joanna Drzymala & Ewa Korzeniewska, 2022. "Impact of the Self-Consumption of Electricity on the Profitability of the Investment into a Photovoltaic Installation: The Case of a Company in Poland," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 316-332.
    6. Mirosława Szewczyk & Anna Szeliga-Duchnowska, 2022. "Make Hay While the Sun Shines: Beneficiaries of Renewable Energy Promotion," Energies, MDPI, vol. 15(9), pages 1-15, May.
    7. Bórawski, Piotr & Holden, Lisa & Bełdycka-Bórawska, Aneta, 2023. "Perspectives of photovoltaic energy market development in the european union," Energy, Elsevier, vol. 270(C).
    8. Kalina Grzesiuk & Dorota Jegorow & Monika Wawer & Anna Głowacz, 2023. "Energy-Efficient City Transportation Solutions in the Context of Energy-Conserving and Mobility Behaviours of Generation Z," Energies, MDPI, vol. 16(15), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aldona Standar & Agnieszka Kozera & Łukasz Satoła, 2021. "The Importance of Local Investments Co-Financed by the European Union in the Field of Renewable Energy Sources in Rural Areas of Poland," Energies, MDPI, vol. 14(2), pages 1-23, January.
    2. Sandro Sacchelli & Valerii Havrysh & Antonina Kalinichenko & Dariusz Suszanowicz, 2022. "Ground-Mounted Photovoltaic and Crop Cultivation: A Comparative Analysis," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    3. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    4. Wadim Strielkowski & Lubomír Civín & Elena Tarkhanova & Manuela Tvaronavičienė & Yelena Petrenko, 2021. "Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review," Energies, MDPI, vol. 14(24), pages 1-24, December.
    5. Magdalena Grębosz-Krawczyk & Agnieszka Zakrzewska-Bielawska & Sylwia Flaszewska, 2021. "From Words to Deeds: The Impact of Pro-Environmental Self-Identity on Green Energy Purchase Intention," Energies, MDPI, vol. 14(18), pages 1-17, September.
    6. Piotr Bórawski & Aneta Bełdycka-Bórawska & Lisa Holden & Tomasz Rokicki, 2022. "The Role of Renewable Energy Sources in Electricity Production in Poland and the Background of Energy Policy of the European Union at the Beginning of the COVID-19 Crisis," Energies, MDPI, vol. 15(22), pages 1-17, November.
    7. Valeria Jana Schwanitz & Tadeusz Józef Rudek & Wit Hubert & August Hubert Wierling, 2022. "The Development of Citizen-Installed Renewable Energy Capacities in Former Eastern Bloc Countries—The Case of Poland," Energies, MDPI, vol. 15(7), pages 1-29, April.
    8. Tomasz Jałowiec & Henryk Wojtaszek & Ireneusz Miciuła, 2022. "Analysis of the Potential Management of the Low-Carbon Energy Transformation by 2050," Energies, MDPI, vol. 15(7), pages 1-29, March.
    9. Pramit Verma & Justyna Chodkowska‐Miszczuk & Agata Lewandowska & Łukasz Wiśniewski, 2023. "Local resilience for low‐carbon transition in Poland: Frameworks, conditions and opportunities for Central European countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1278-1295, June.
    10. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2021. "Macroeconomic Efficiency of Photovoltaic Energy Production in Polish Farms," Energies, MDPI, vol. 14(18), pages 1-19, September.
    11. Jacek Brożyna & Wadim Strielkowski & Aleš Zpěvák, 2023. "Evaluating the Chances of Implementing the “Fit for 55” Green Transition Package in the V4 Countries," Energies, MDPI, vol. 16(6), pages 1-17, March.
    12. Marek Furmankiewicz & Richard J. Hewitt & Andrzej Kapusta & Iga Solecka, 2021. "Climate Change Challenges and Community-Led Development Strategies: Do They Fit Together in Fisheries Regions?," Energies, MDPI, vol. 14(20), pages 1-21, October.
    13. Patrick Moriarty & Damon Honnery, 2020. "Feasibility of a 100% Global Renewable Energy System," Energies, MDPI, vol. 13(21), pages 1-16, October.
    14. Marlena Piekut, 2021. "The Consumption of Renewable Energy Sources (RES) by the European Union Households between 2004 and 2019," Energies, MDPI, vol. 14(17), pages 1-31, September.
    15. Justyna Chodkowska-Miszczuk & Tomasz Starczewski & Krzysztof Rogatka & Aleksandra Lewandowska & Stanislav Martinat, 2023. "From adoration to damnation? Exploring role of media in shaping low-carbon economy in times of the COVID-19 pandemic," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9543-9565, September.
    16. Dalia Štreimikienė & Vidas Lekavičius & Gintare Stankūnienė & Aušra Pažėraitė, 2022. "Renewable Energy Acceptance by Households: Evidence from Lithuania," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    17. Sylwester Robak & Robert Raczkowski & Michał Piekarz, 2023. "Development of the Wind Generation Sector and Its Effect on the Grid Operation—The Case of Poland," Energies, MDPI, vol. 16(19), pages 1-16, September.
    18. Martinopoulos, Georgios, 2020. "Are rooftop photovoltaic systems a sustainable solution for Europe? A life cycle impact assessment and cost analysis," Applied Energy, Elsevier, vol. 257(C).
    19. Piotr Olczak & Dominika Matuszewska, 2023. "Energy Storage Potential Needed at the National Grid Scale (Poland) in Order to Stabilize Daily Electricity Production from Fossil Fuels and Nuclear Power," Energies, MDPI, vol. 16(16), pages 1-11, August.
    20. Piotr Olczak & Agnieszka Żelazna & Dominika Matuszewska & Małgorzata Olek, 2021. "The “My Electricity” Program as One of the Ways to Reduce CO 2 Emissions in Poland," Energies, MDPI, vol. 14(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6987-:d:663948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.