IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3484-d1435743.html
   My bibliography  Save this article

Regional Interferences to Photovoltaic Development: A Polish Perspective

Author

Listed:
  • Katarzyna Kocur-Bera

    (Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

Abstract

The stability of energy generation is crucial for the functioning of every country. Currently, the EU policy is moving towards becoming independent of fossil energy sources, which can be replaced with sources that are not exhaustible, for example, energy from the sun. Public awareness of renewable energy is increasing. People are willing to invest in natural solutions. However, planning large photovoltaic farm projects is difficult due to complex location requirements. The study aimed to analyse the interferences/barriers to be considered when searching for a suitable location to install a photovoltaic farm. The analysis was conducted for the territory of Poland. The study used a literature and local legislation query and the Delphi method. The Delphi method identified the most important interferences from the investor’s perspective. Eleven interferences have been identified, classified into legal, spatial, technical, social, and financial groups. Several are locally determined and only exist in selected locations (e.g., technical determinants of the power grid condition, etc.). In contrast, others are unitary (e.g., concerns about the impact of PV on human health, etc.). The decision-makers are aware of the existing interferences/barriers, and the proposed administrative, legal, and technical solutions marginally mitigate barriers. System solutions are recommended, allowing an easier way to find a suitable location for a PV system.

Suggested Citation

  • Katarzyna Kocur-Bera, 2024. "Regional Interferences to Photovoltaic Development: A Polish Perspective," Energies, MDPI, vol. 17(14), pages 1-26, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3484-:d:1435743
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhandari, Khagendra P. & Collier, Jennifer M. & Ellingson, Randy J. & Apul, Defne S., 2015. "Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 133-141.
    2. Krystyna Kurowska & Hubert Kryszk & Stanisław Bielski, 2022. "Location and Technical Requirements for Photovoltaic Power Stations in Poland," Energies, MDPI, vol. 15(7), pages 1-16, April.
    3. Shrimali, Gireesh & Jenner, Steffen, 2013. "The impact of state policy on deployment and cost of solar photovoltaic technology in the U.S.: A sector-specific empirical analysis," Renewable Energy, Elsevier, vol. 60(C), pages 679-690.
    4. Curtius, Hans Christoph, 2018. "The adoption of building-integrated photovoltaics: barriers and facilitators," Renewable Energy, Elsevier, vol. 126(C), pages 783-790.
    5. Muhammad Irfan & Zhen-Yu Zhao & Munir Ahmad & Marie Claire Mukeshimana, 2019. "Solar Energy Development in Pakistan: Barriers and Policy Recommendations," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reindl, K. & Palm, J., 2021. "Installing PV: Barriers and enablers experienced by non-residential property owners," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Pereira da Silva, Patrícia & Dantas, Guilherme & Pereira, Guillermo Ivan & Câmara, Lorrane & De Castro, Nivalde J., 2019. "Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 30-39.
    3. Fu, Yijun & Xu, Wei & Wang, Zhichao & Zhang, Shicong & Chen, Xi & Zhang, Xinyu, 2023. "Experimental study on thermoelectric effect pattern analysis and novel thermoelectric coupling model of BIPV facade system," Renewable Energy, Elsevier, vol. 217(C).
    4. Charles Neumeyer & Robert Goldston, 2016. "Dynamic EROI Assessment of the IPCC 21st Century Electricity Production Scenario," Sustainability, MDPI, vol. 8(5), pages 1-15, April.
    5. Mansoor Mustafa & Muhammad Omer Farooq Malik & Ahsen Maqsoom, 2024. "Barriers to Solar PV Adoption in Developing Countries: Multiple Regression and Analytical Hierarchy Process Approach," Sustainability, MDPI, vol. 16(3), pages 1-19, January.
    6. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    7. Verdolini, Elena & Vona, Francesco & Popp, David, 2018. "Bridging the gap: Do fast-reacting fossil technologies facilitate renewable energy diffusion?," Energy Policy, Elsevier, vol. 116(C), pages 242-256.
    8. Aleksander Jakimowicz, 2022. "The Future of the Energy Sector and the Global Economy: Prosumer Capitalism and What Comes Next," Energies, MDPI, vol. 15(23), pages 1-26, December.
    9. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    10. Ionica Oncioiu & Anca Gabriela Petrescu & Eugenia Grecu & Marius Petrescu, 2017. "Optimizing the Renewable Energy Potential: Myth or Future Trend in Romania," Energies, MDPI, vol. 10(6), pages 1-14, May.
    11. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.
    12. Bart Hawkins Kreps, 2020. "Energy Sprawl in the Renewable‐Energy Sector: Moving to Sufficiency in a Post Growth Era," American Journal of Economics and Sociology, Wiley Blackwell, vol. 79(3), pages 719-749, May.
    13. Thopil, George Alex & Sachse, Christiaan Eddie & Lalk, Jörg & Thopil, Miriam Sara, 2020. "Techno-economic performance comparison of crystalline and thin film PV panels under varying meteorological conditions: A high solar resource southern hemisphere case," Applied Energy, Elsevier, vol. 275(C).
    14. Ruth Winecoff & Michelle Graff, 2020. "Innovation in Financing Energy‐Efficient and Renewable Energy Upgrades: An Evaluation of Property Assessed Clean Energy for California Residences," Social Science Quarterly, Southwestern Social Science Association, vol. 101(7), pages 2555-2573, December.
    15. Ron Swenson, 2016. "The Solarevolution: Much More with Way Less, Right Now—The Disruptive Shift to Renewables," Energies, MDPI, vol. 9(9), pages 1-22, August.
    16. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.
    17. Arifa Tanveer & Shihong Zeng & Muhammad Irfan & Rui Peng, 2021. "Do Perceived Risk, Perception of Self-Efficacy, and Openness to Technology Matter for Solar PV Adoption? An Application of the Extended Theory of Planned Behavior," Energies, MDPI, vol. 14(16), pages 1-24, August.
    18. Barnea, Gil & Hagemann, Christian & Wurster, Stefan, 2022. "Policy instruments matter: Support schemes for renewable energy capacity in worldwide comparison," Energy Policy, Elsevier, vol. 168(C).
    19. Jed J. Cohen, Levan Elbakidze, and Randall Jackson, 2020. "Solar Bait: How U.S. States Attract Solar Investments from Large Corporations," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 167-190.
    20. Kosa Golić & Vesna Kosorić & Slavica Stamatovic Vuckovic & Kosara Kujundzic, 2023. "Strategies for Realization of Socially Sustainable Residential Buildings: Experts’ Perspectives," Sustainability, MDPI, vol. 15(9), pages 1-31, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3484-:d:1435743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.