Cloud tracking using clusters of feature points for accurate solar irradiance nowcasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2016.12.023
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chaabene, Maher & Ben Ammar, Mohsen, 2008. "Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems," Renewable Energy, Elsevier, vol. 33(7), pages 1435-1443.
- Cheng, Hsu-Yung & Yu, Chih-Chang, 2015. "Multi-model solar irradiance prediction based on automatic cloud classification," Energy, Elsevier, vol. 91(C), pages 579-587.
- Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
- Angelis-Dimakis, Athanasios & Biberacher, Markus & Dominguez, Javier & Fiorese, Giulia & Gadocha, Sabine & Gnansounou, Edgard & Guariso, Giorgio & Kartalidis, Avraam & Panichelli, Luis & Pinedo, Irene, 2011. "Methods and tools to evaluate the availability of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1182-1200, February.
- Cheng, Hsu-Yung, 2016. "Hybrid solar irradiance now-casting by fusing Kalman filter and regressor," Renewable Energy, Elsevier, vol. 91(C), pages 434-441.
- Cheng, Hsu-Yung & Yu, Chih-Chang & Lin, Sian-Jing, 2014. "Bi-model short-term solar irradiance prediction using support vector regressors," Energy, Elsevier, vol. 70(C), pages 121-127.
- Martínez-Chico, M. & Batlles, F.J. & Bosch, J.L., 2011. "Cloud classification in a mediterranean location using radiation data and sky images," Energy, Elsevier, vol. 36(7), pages 4055-4062.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Han, Tian & Li, Ruimeng & Wang, Xiao & Wang, Ying & Chen, Kang & Peng, Huaiwu & Gao, Zhenxin & Wang, Nannan & Peng, Qinke, 2024. "Intra-hour solar irradiance forecasting using topology data analysis and physics-driven deep learning," Renewable Energy, Elsevier, vol. 224(C).
- Niu, Yinsen & Song, Jifeng & Zou, Lianglin & Yan, Zixuan & Lin, Xilong, 2024. "Cloud detection method using ground-based sky images based on clear sky library and superpixel local threshold," Renewable Energy, Elsevier, vol. 226(C).
- Terrén-Serrano, Guillermo & Martínez-Ramón, Manel, 2021. "Multi-layer wind velocity field visualization in infrared images of clouds for solar irradiance forecasting," Applied Energy, Elsevier, vol. 288(C).
- Garcia, Dário & Liang, Dawei & Almeida, Joana & Catela, Miguel & Costa, Hugo & Tibúrcio, Bruno D. & Guillot, Emmanuel & Vistas, Cláudia R., 2023. "Lowest-threshold solar laser operation under cloudy sky condition," Renewable Energy, Elsevier, vol. 210(C), pages 127-133.
- Muhammad Naveed Akhter & Saad Mekhilef & Hazlie Mokhlis & Ziyad M. Almohaimeed & Munir Azam Muhammad & Anis Salwa Mohd Khairuddin & Rizwan Akram & Muhammad Majid Hussain, 2022. "An Hour-Ahead PV Power Forecasting Method Based on an RNN-LSTM Model for Three Different PV Plants," Energies, MDPI, vol. 15(6), pages 1-21, March.
- Eşlik, Ardan Hüseyin & Akarslan, Emre & Hocaoğlu, Fatih Onur, 2022. "Short-term solar radiation forecasting with a novel image processing-based deep learning approach," Renewable Energy, Elsevier, vol. 200(C), pages 1490-1505.
- Lin, Fan & Zhang, Yao & Wang, Jianxue, 2023. "Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods," International Journal of Forecasting, Elsevier, vol. 39(1), pages 244-265.
- Carpentieri, A. & Folini, D. & Nerini, D. & Pulkkinen, S. & Wild, M. & Meyer, A., 2023. "Intraday probabilistic forecasts of surface solar radiation with cloud scale-dependent autoregressive advection," Applied Energy, Elsevier, vol. 351(C).
- Guilherme Fonseca Bassous & Rodrigo Flora Calili & Carlos Hall Barbosa, 2021. "Development of a Low-Cost Data Acquisition System for Very Short-Term Photovoltaic Power Forecasting," Energies, MDPI, vol. 14(19), pages 1-28, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cheng, Hsu-Yung & Yu, Chih-Chang & Lin, Chih-Lung, 2021. "Day-ahead to week-ahead solar irradiance prediction using convolutional long short-term memory networks," Renewable Energy, Elsevier, vol. 179(C), pages 2300-2308.
- Cheng, Hsu-Yung, 2016. "Hybrid solar irradiance now-casting by fusing Kalman filter and regressor," Renewable Energy, Elsevier, vol. 91(C), pages 434-441.
- Lin, Fan & Zhang, Yao & Wang, Jianxue, 2023. "Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods," International Journal of Forecasting, Elsevier, vol. 39(1), pages 244-265.
- Eşlik, Ardan Hüseyin & Akarslan, Emre & Hocaoğlu, Fatih Onur, 2022. "Short-term solar radiation forecasting with a novel image processing-based deep learning approach," Renewable Energy, Elsevier, vol. 200(C), pages 1490-1505.
- Huang, Zishuo & Yu, Hang & Peng, Zhenwei & Zhao, Mei, 2015. "Methods and tools for community energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1335-1348.
- Larson, David P. & Nonnenmacher, Lukas & Coimbra, Carlos F.M., 2016. "Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest," Renewable Energy, Elsevier, vol. 91(C), pages 11-20.
- Cheng, Hsu-Yung & Yu, Chih-Chang, 2015. "Multi-model solar irradiance prediction based on automatic cloud classification," Energy, Elsevier, vol. 91(C), pages 579-587.
- Voyant, Cyril & Motte, Fabrice & Fouilloy, Alexis & Notton, Gilles & Paoli, Christophe & Nivet, Marie-Laure, 2017. "Forecasting method for global radiation time series without training phase: Comparison with other well-known prediction methodologies," Energy, Elsevier, vol. 120(C), pages 199-208.
- Cheng, Hsu-Yung & Yu, Chih-Chang & Lin, Sian-Jing, 2014. "Bi-model short-term solar irradiance prediction using support vector regressors," Energy, Elsevier, vol. 70(C), pages 121-127.
- Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
- Hsu-Yung Cheng & Chih-Chang Yu & Kuo-Chang Hsu & Chi-Chang Chan & Mei-Hui Tseng & Chih-Lung Lin, 2019. "Estimating Solar Irradiance on Tilted Surface with Arbitrary Orientations and Tilt Angles," Energies, MDPI, vol. 12(8), pages 1-14, April.
- Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
- Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
- Keun-Seob Choi & Jeong-Dong Lee & Chulwoo Baek, 2016. "Growth of De Alio and De Novo firms in the new and renewable energy industry," Industry and Innovation, Taylor & Francis Journals, vol. 23(4), pages 295-312, May.
- Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
- Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
- Tomislav Malvić & Uroš Barudžija & Borivoje Pašić & Josip Ivšinović, 2021. "Small Unconventional Hydrocarbon Gas Reservoirs as Challenging Energy Sources, Case Study from Northern Croatia," Energies, MDPI, vol. 14(12), pages 1-16, June.
- Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
- Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
More about this item
Keywords
Cloud tracking; Feature point; Clustering; Irradiance nowcasting; Ramp-down event;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:104:y:2017:i:c:p:281-289. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.