IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2212-d773763.html
   My bibliography  Save this article

Optimal Scheduling of Battery Energy Storage Systems and Demand Response for Distribution Systems with High Penetration of Renewable Energy Sources

Author

Listed:
  • Xuehan Zhang

    (School of Electrical Engineering, Korea University, Seoul 02841, Korea)

  • Yongju Son

    (School of Electrical Engineering, Korea University, Seoul 02841, Korea)

  • Sungyun Choi

    (School of Electrical Engineering, Korea University, Seoul 02841, Korea)

Abstract

The penetration of renewable energy sources (RESs) is increasing in modern power systems. However, the uncertainties of RESs pose challenges to distribution system operations, such as RES curtailment. Demand response (DR) and battery energy storage systems (BESSs) are flexible countermeasures for distribution-system operators. In this context, this study proposes an optimization model that considers DR and BESSs and develops a simulation analysis platform representing a medium-sized distribution system with high penetration of RESs. First, BESSs and DR were employed to minimize the total expenses of the distribution system operation, where the BESS model excluding binary state variables was adopted. Second, a simulation platform based on a modified IEEE 123 bus system was developed via MATLAB/Simulink for day-ahead scheduling analysis of the distribution system with a high penetration of RESs. The simulation results indicate the positive effects of DR implementation, BESS deployment, and permission for electricity sales to the upper utility on decreasing RES curtailment and distribution system operation costs. Noticeably, the RES curtailments became zero with the permission of bidirectional power flow. In addition, the adopted BESS model excluding binary variables was also validated. Finally, the effectiveness of the developed simulation analysis platform for day-ahead scheduling was demonstrated.

Suggested Citation

  • Xuehan Zhang & Yongju Son & Sungyun Choi, 2022. "Optimal Scheduling of Battery Energy Storage Systems and Demand Response for Distribution Systems with High Penetration of Renewable Energy Sources," Energies, MDPI, vol. 15(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2212-:d:773763
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2212/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2212/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Morris Brenna & Federica Foiadelli & Michela Longo & Dario Zaninelli, 2017. "Improvement of Wind Energy Production through HVDC Systems," Energies, MDPI, vol. 10(2), pages 1-25, January.
    2. Giacomo Talluri & Gabriele Maria Lozito & Francesco Grasso & Carlos Iturrino Garcia & Antonio Luchetta, 2021. "Optimal Battery Energy Storage System Scheduling within Renewable Energy Communities," Energies, MDPI, vol. 14(24), pages 1-23, December.
    3. Li, Rui & Wang, Wei & Wu, Xuezhi & Tang, Fen & Chen, Zhe, 2019. "Cooperative planning model of renewable energy sources and energy storage units in active distribution systems: A bi-level model and Pareto analysis," Energy, Elsevier, vol. 168(C), pages 30-42.
    4. Yahong Xing & Haibo Zhao & Zeyuan Shen & Lin Zhang & Zhi Zhang & Qi Li & Se Wu, 2021. "Optimal Coordinated Energy Management in Active Distribution System with Battery Energy Storage and Price-Responsive Demand," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, February.
    5. Tabatabaee, Sajad & Mortazavi, Seyed Saeedallah & Niknam, Taher, 2017. "Stochastic scheduling of local distribution systems considering high penetration of plug-in electric vehicles and renewable energy sources," Energy, Elsevier, vol. 121(C), pages 480-490.
    6. Modawy Adam Ali Abdalla & Wang Min & Omer Abbaker Ahmed Mohammed, 2020. "Two-Stage Energy Management Strategy of EV and PV Integrated Smart Home to Minimize Electricity Cost and Flatten Power Load Profile," Energies, MDPI, vol. 13(23), pages 1-18, December.
    7. Vanderlei Aparecido Silva & Alexandre Rasi Aoki & Germano Lambert-Torres, 2020. "Optimal Day-Ahead Scheduling of Microgrids with Battery Energy Storage System," Energies, MDPI, vol. 13(19), pages 1-28, October.
    8. Zhang, Xuehan & Son, Yongju & Cheong, Taesu & Choi, Sungyun, 2022. "Affine-arithmetic-based microgrid interval optimization considering uncertainty and battery energy storage system degradation," Energy, Elsevier, vol. 242(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    2. Xiuqiang He & Hua Geng & Geng Yang & Xin Zou, 2018. "Coordinated Control for Large-Scale Wind Farms with LCC-HVDC Integration," Energies, MDPI, vol. 11(9), pages 1-19, August.
    3. Jurasz, Jakub & Dąbek, Paweł B. & Kaźmierczak, Bartosz & Kies, Alexander & Wdowikowski, Marcin, 2018. "Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland)," Energy, Elsevier, vol. 161(C), pages 183-192.
    4. Ghahramani, Mehrdad & Nazari-Heris, Morteza & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2019. "Energy and reserve management of a smart distribution system by incorporating responsive-loads /battery/wind turbines considering uncertain parameters," Energy, Elsevier, vol. 183(C), pages 205-219.
    5. Fei Feng & Xin Du & Qiang Si & Hao Cai, 2022. "Hybrid Game Optimization of Microgrid Cluster (MC) Based on Service Provider (SP) and Tiered Carbon Price," Energies, MDPI, vol. 15(14), pages 1-22, July.
    6. Lin, Yu-Hsiu & Shen, Ting-Yu, 2023. "Novel cell screening and prognosing based on neurocomputing-based multiday-ahead time-series forecasting for predictive maintenance of battery modules in frequency regulation-energy storage systems," Applied Energy, Elsevier, vol. 351(C).
    7. Emely Cruz-De-Jesús & Jose L. Martínez-Ramos & Alejandro Marano-Marcolini, 2022. "Optimal Scheduling of Controllable Resources in Energy Communities: An Overview of the Optimization Approaches," Energies, MDPI, vol. 16(1), pages 1-15, December.
    8. Seddig, Katrin & Jochem, Patrick & Fichtner, Wolf, 2017. "Integrating renewable energy sources by electric vehicle fleets under uncertainty," Energy, Elsevier, vol. 141(C), pages 2145-2153.
    9. Alicia Triviño & José M. González-González & José A. Aguado, 2021. "Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review," Energies, MDPI, vol. 14(6), pages 1-21, March.
    10. Mohsin Ali Koondhar & Ghulam Sarwar Kaloi & Abdul Sattar Saand & Sadullah Chandio & Wonsuk Ko & Sisam Park & Hyeong-Jin Choi & Ragab Abdelaziz El-Sehiemy, 2023. "Critical Technical Issues with a Voltage-Source-Converter-Based High Voltage Direct Current Transmission System for the Onshore Integration of Offshore Wind Farms," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    11. Harsh Wardhan Pandey & Ramesh Kumar & Rajib Kumar Mandal, 2023. "Ranking of mitigation strategies for duck curve in Indian active distribution network using MCDM," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1255-1275, August.
    12. Parinaz Aliasghari & Behnam Mohammadi-Ivatloo & Mehdi Abapour & Ali Ahmadian & Ali Elkamel, 2020. "Goal Programming Application for Contract Pricing of Electric Vehicle Aggregator in Join Day-Ahead Market," Energies, MDPI, vol. 13(7), pages 1-12, April.
    13. Jesús Fraile Ardanuy & Roberto Alvaro-Hermana & Sandra Castano-Solis & Julia Merino, 2022. "Carbon-Free Electricity Generation in Spain with PV–Storage Hybrid Systems," Energies, MDPI, vol. 15(13), pages 1-20, June.
    14. Fahad Alismail & Mohamed A. Abdulgalil & Muhammad Khalid, 2021. "Optimal Coordinated Planning of Energy Storage and Tie-Lines to Boost Flexibility with High Wind Power Integration," Sustainability, MDPI, vol. 13(5), pages 1-17, February.
    15. Mohammed, Nooriya A. & Al-Bazi, Ammar, 2021. "Management of renewable energy production and distribution planning using agent-based modelling," Renewable Energy, Elsevier, vol. 164(C), pages 509-520.
    16. Zhu, Yansong & Liu, Jizhen & Hu, Yong & Xie, Yan & Zeng, Deliang & Li, Ruilian, 2024. "Distributionally robust optimization model considering deep peak shaving and uncertainty of renewable energy," Energy, Elsevier, vol. 288(C).
    17. Li, Shuangqi & Gu, Chenghong & Zeng, Xianwu & Zhao, Pengfei & Pei, Xiaoze & Cheng, Shuang, 2021. "Vehicle-to-grid management for multi-time scale grid power balancing," Energy, Elsevier, vol. 234(C).
    18. Xie, Rui & Wei, Wei & Li, Mingxuan & Dong, ZhaoYang & Mei, Shengwei, 2023. "Sizing capacities of renewable generation, transmission, and energy storage for low-carbon power systems: A distributionally robust optimization approach," Energy, Elsevier, vol. 263(PA).
    19. Jong Hui Moon & Han Na Gwon & Gi Ryong Jo & Woo Yeong Choi & Kyung Soo Kook, 2020. "Stochastic Modeling Method of Plug-in Electric Vehicle Charging Demand for Korean Transmission System Planning," Energies, MDPI, vol. 13(17), pages 1-14, August.
    20. Hafiz Abdul Muqeet & Hafiz Mudassir Munir & Haseeb Javed & Muhammad Shahzad & Mohsin Jamil & Josep M. Guerrero, 2021. "An Energy Management System of Campus Microgrids: State-of-the-Art and Future Challenges," Energies, MDPI, vol. 14(20), pages 1-34, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2212-:d:773763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.