IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5188-d424013.html
   My bibliography  Save this article

Optimal Day-Ahead Scheduling of Microgrids with Battery Energy Storage System

Author

Listed:
  • Vanderlei Aparecido Silva

    (Department of Electrical Engineering, Federal University of Parana, Curitiba 82590-300, Brazil)

  • Alexandre Rasi Aoki

    (Department of Electrical Engineering, Federal University of Parana, Curitiba 82590-300, Brazil)

  • Germano Lambert-Torres

    (R&D Department, Gnarus Institute, Itajuba 37500-052, Brazil)

Abstract

Optimal scheduling is a requirement for microgrids to participate in current and future energy markets. Although the number of research articles on this subject is on the rise, there is a shortage of papers containing detailed mathematical modeling of the distributed energy resources available in a microgrid. To address this gap, this paper presents in detail how to mathematically model resources such as battery energy storage systems, solar generation systems, directly controllable loads, load shedding, scheduled intentional islanding, and generation curtailment in the microgrid optimal scheduling problem. The proposed modeling also includes a methodology to determine the availability cost of battery and solar systems assets. Simulations were carried out considering energy prices from an actual time-of-use tariff, costs based on real market data, and scenarios with scheduled islanding. Simulation results provide support to validate the proposed model. Data illustrate how energy arbitrage can reduce microgrid costs in a time-of-use tariff. Results also show how the microgrid’s self-sufficiency and the storage system’s capacity can impact the microgrid’s energy bill. The findings also bring out the need to consider the scheduled islanding event in the day-ahead optimization for microgrids.

Suggested Citation

  • Vanderlei Aparecido Silva & Alexandre Rasi Aoki & Germano Lambert-Torres, 2020. "Optimal Day-Ahead Scheduling of Microgrids with Battery Energy Storage System," Energies, MDPI, vol. 13(19), pages 1-28, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5188-:d:424013
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5188/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5188/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rodrigues, E.M.G. & Godina, R. & Santos, S.F. & Bizuayehu, A.W. & Contreras, J. & Catalão, J.P.S., 2014. "Energy storage systems supporting increased penetration of renewables in islanded systems," Energy, Elsevier, vol. 75(C), pages 265-280.
    2. Mohamed El-Hendawi & Hossam A. Gabbar & Gaber El-Saady & El-Nobi A. Ibrahim, 2018. "Control and EMS of a Grid-Connected Microgrid with Economical Analysis," Energies, MDPI, vol. 11(1), pages 1-20, January.
    3. Li, Bei & Roche, Robin & Miraoui, Abdellatif, 2017. "Microgrid sizing with combined evolutionary algorithm and MILP unit commitment," Applied Energy, Elsevier, vol. 188(C), pages 547-562.
    4. Anh-Duc Nguyen & Van-Hai Bui & Akhtar Hussain & Duc-Huy Nguyen & Hak-Man Kim, 2018. "Impact of Demand Response Programs on Optimal Operation of Multi-Microgrid System," Energies, MDPI, vol. 11(6), pages 1-18, June.
    5. Chongxin Huang & Dong Yue & Song Deng & Jun Xie, 2017. "Optimal Scheduling of Microgrid with Multiple Distributed Resources Using Interval Optimization," Energies, MDPI, vol. 10(3), pages 1-23, March.
    6. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    7. Zhang, Bingying & Li, Qiqiang & Wang, Luhao & Feng, Wei, 2018. "Robust optimization for energy transactions in multi-microgrids under uncertainty," Applied Energy, Elsevier, vol. 217(C), pages 346-360.
    8. Makbul A.M. Ramli & H.R.E.H. Bouchekara & Abdulsalam S. Alghamdi, 2019. "Efficient Energy Management in a Microgrid with Intermittent Renewable Energy and Storage Sources," Sustainability, MDPI, vol. 11(14), pages 1-28, July.
    9. Gi-Ho Lee & Jae-Young Park & Seung-Jun Ham & Young-Jin Kim, 2020. "Comparative Study on Optimization Solvers for Implementation of a Two-Stage Economic Dispatch Strategy in a Microgrid Energy Management System," Energies, MDPI, vol. 13(5), pages 1-21, March.
    10. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    11. Rae-Kyun Kim & Mark B. Glick & Keith R. Olson & Yun-Su Kim, 2020. "MILP-PSO Combined Optimization Algorithm for an Islanded Microgrid Scheduling with Detailed Battery ESS Efficiency Model and Policy Considerations," Energies, MDPI, vol. 13(8), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erol, Özge & Başaran Filik, Ümmühan, 2022. "A Stackelberg game approach for energy sharing management of a microgrid providing flexibility to entities," Applied Energy, Elsevier, vol. 316(C).
    2. Fahad Alismail & Mohamed A. Abdulgalil & Muhammad Khalid, 2021. "Optimal Coordinated Planning of Energy Storage and Tie-Lines to Boost Flexibility with High Wind Power Integration," Sustainability, MDPI, vol. 13(5), pages 1-17, February.
    3. Paolo Tenti & Tommaso Caldognetto, 2022. "Generalized Control of the Power Flow in Local Area Energy Networks," Energies, MDPI, vol. 15(4), pages 1-21, February.
    4. Xuehan Zhang & Yongju Son & Sungyun Choi, 2022. "Optimal Scheduling of Battery Energy Storage Systems and Demand Response for Distribution Systems with High Penetration of Renewable Energy Sources," Energies, MDPI, vol. 15(6), pages 1-18, March.
    5. Hossein Abedini & Tommaso Caldognetto & Paolo Mattavelli & Paolo Tenti, 2020. "Real-Time Validation of Power Flow Control Method for Enhanced Operation of Microgrids," Energies, MDPI, vol. 13(22), pages 1-19, November.
    6. Dominika Kaczorowska & Jacek Rezmer & Michal Jasinski & Tomasz Sikorski & Vishnu Suresh & Zbigniew Leonowicz & Pawel Kostyla & Jaroslaw Szymanda & Przemyslaw Janik, 2020. "A Case Study on Battery Energy Storage System in a Virtual Power Plant: Defining Charging and Discharging Characteristics," Energies, MDPI, vol. 13(24), pages 1-22, December.
    7. Eugenio Borghini & Cinzia Giannetti & James Flynn & Grazia Todeschini, 2021. "Data-Driven Energy Storage Scheduling to Minimise Peak Demand on Distribution Systems with PV Generation," Energies, MDPI, vol. 14(12), pages 1-22, June.
    8. Maria Carmela Di Piazza, 2022. "Recent Developments and Trends in Energy Management Systems for Microgrids," Energies, MDPI, vol. 15(21), pages 1-6, November.
    9. Hafiz Abdul Muqeet & Hafiz Mudassir Munir & Haseeb Javed & Muhammad Shahzad & Mohsin Jamil & Josep M. Guerrero, 2021. "An Energy Management System of Campus Microgrids: State-of-the-Art and Future Challenges," Energies, MDPI, vol. 14(20), pages 1-34, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Haifeng & Gu, Wei & Liu, Pengxiang & Sun, Qirun & Wu, Zhi & Lu, Xi, 2022. "Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective," Energy, Elsevier, vol. 251(C).
    2. Jinwoo Jeong & Heewon Shin & Hwachang Song & Byongjun Lee, 2018. "A Countermeasure for Preventing Flexibility Deficit under High-Level Penetration of Renewable Energies: A Robust Optimization Approach," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    3. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    4. e Silva, Danilo P. & Félix Salles, José L. & Fardin, Jussara F. & Rocha Pereira, Maxsuel M., 2020. "Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data," Applied Energy, Elsevier, vol. 278(C).
    5. Philippe de Bekker & Sho Cremers & Sonam Norbu & David Flynn & Valentin Robu, 2023. "Improving the Efficiency of Renewable Energy Assets by Optimizing the Matching of Supply and Demand Using a Smart Battery Scheduling Algorithm," Energies, MDPI, vol. 16(5), pages 1-26, March.
    6. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Hu, Mian & Wang, Yan-Wu & Xiao, Jiang-Wen & Lin, Xiangning, 2019. "Multi-energy management with hierarchical distributed multi-scale strategy for pelagic islanded microgrid clusters," Energy, Elsevier, vol. 185(C), pages 910-921.
    8. Ana Cabrera-Tobar & Alessandro Massi Pavan & Giovanni Petrone & Giovanni Spagnuolo, 2022. "A Review of the Optimization and Control Techniques in the Presence of Uncertainties for the Energy Management of Microgrids," Energies, MDPI, vol. 15(23), pages 1-38, December.
    9. Koubaa, Rayhane & Bacha, Seddik & Smaoui, Mariem & krichen, Lotfi, 2020. "Robust optimization based energy management of a fuel cell/ultra-capacitor hybrid electric vehicle under uncertainty," Energy, Elsevier, vol. 200(C).
    10. Shu, Kangan & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Chen, Zhe & He, Haibo & Wen, Jinyu, 2019. "Real-time subsidy based robust scheduling of the integrated power and gas system," Applied Energy, Elsevier, vol. 236(C), pages 1158-1167.
    11. Mazidi, Mohammadreza & Rezaei, Navid & Ghaderi, Abdolsalam, 2019. "Simultaneous power and heat scheduling of microgrids considering operational uncertainties: A new stochastic p-robust optimization approach," Energy, Elsevier, vol. 185(C), pages 239-253.
    12. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    13. Ruifeng Shi & Shaopeng Li & Changhao Sun & Kwang Y. Lee, 2018. "Adjustable Robust Optimization Algorithm for Residential Microgrid Multi-Dispatch Strategy with Consideration of Wind Power and Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-22, August.
    14. Jianwen Ren & Yingqiang Xu & Shiyuan Wang, 2018. "A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration," Energies, MDPI, vol. 11(4), pages 1-18, April.
    15. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    16. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    17. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    18. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    19. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    20. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5188-:d:424013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.