IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2057-d769219.html
   My bibliography  Save this article

Investigations into the Combined Effect of Mahua Biodiesel Blends and Biogas in a Dual Fuel Engine

Author

Listed:
  • Anmol Singh Kshatriya

    (School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore 600127, Tamil Nadu, India)

  • Prabhatkumar Tiwari

    (School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore 600127, Tamil Nadu, India)

  • Sreekanth M

    (School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore 600127, Tamil Nadu, India
    EVIT-RC, Vellore Institute of Technology (VIT), Vellore 600127, Tamil Nadu, India)

  • T. M. Yunus Khan

    (Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia)

  • Shaik Dawood Abdul Khadar

    (Industrial Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia)

  • Mohamed Mansour

    (Industrial Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
    Industrial Engineering Department, College of Engineering, Zagazig University, Zagazig 44519, Egypt)

  • Feroskhan M

    (School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore 600127, Tamil Nadu, India)

Abstract

Rapid depletion of conventional fuel sources has led to the use of alternative fuels and implementation of variant engine technologies to reduce deleterious emissions being released and deliver thermal energy for numerous applications. This research aims to study the usage of mahua methyl ester in a single-cylinder 4-stroke CI engine, optimized to operate in the dual fuel mode. Performance, combustion and emission characteristics are recorded and compared with diesel with the sole aim of finding the blend that provides adequate performance and diminishing emissions. To this effect, the percentage of mahua biodiesel blend, load, biogas flow rate and methane fraction are varied. The experimentation is conducted using three mahua biodiesel blend variants namely B10, B20 and B30. Gaseous fuel comprising biogas (CH 4 and CO 2 in ratio of 3:2) and methane (CH 4 ) are incorporated in the dual fuel condition at 8 litre per minute (lpm) and 12 lpm. B20 blend demonstrated better performance and emission characteristics. The addition of biodiesel (B20) showed more than 5% improvement in brake thermal efficiency. Additionally, comparing with normal diesel mode, B20 showed lower CO (0.061%) and NO x (615 ppm) emissions. In the dual fuel condition, methane and biogas are effective in reducing the NO x emissions, but with a negative repercussion of extortionately elevated HC and CO emissions. The best combination is deduced to be B20 mahua biodiesel at 8 lpm of biogas flow rate in the dual fuel mode due to better performance and emission characteristics.

Suggested Citation

  • Anmol Singh Kshatriya & Prabhatkumar Tiwari & Sreekanth M & T. M. Yunus Khan & Shaik Dawood Abdul Khadar & Mohamed Mansour & Feroskhan M, 2022. "Investigations into the Combined Effect of Mahua Biodiesel Blends and Biogas in a Dual Fuel Engine," Energies, MDPI, vol. 15(6), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2057-:d:769219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2057/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2057/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shouying Jin & Jinze Li & Longfei Deng & Binyang Wu, 2021. "Effect of the HPDI and PPCI Combustion Modes of Direct-Injection Natural Gas Engine on Combustion and Emissions," Energies, MDPI, vol. 14(7), pages 1-17, April.
    2. Arkadiusz Jamrozik & Wojciech Tutak & Renata Gnatowska & Łukasz Nowak, 2019. "Comparative Analysis of the Combustion Stability of Diesel-Methanol and Diesel-Ethanol in a Dual Fuel Engine," Energies, MDPI, vol. 12(6), pages 1-17, March.
    3. M. Mofijur & M.M. Hasan & T.M.I. Mahlia & S.M. Ashrafur Rahman & A.S. Silitonga & Hwai Chyuan Ong, 2019. "Performance and Emission Parameters of Homogeneous Charge Compression Ignition (HCCI) Engine: A Review," Energies, MDPI, vol. 12(18), pages 1-21, September.
    4. Srivastava, Anjana & Prasad, Ram, 2000. "Triglycerides-based diesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 111-133, June.
    5. Rosha, Pali & Dhir, Amit & Mohapatra, Saroj Kumar, 2018. "Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3333-3349.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    2. Tsai, Wen-Tien & Lin, Chih-Chung & Yeh, Ching-Wei, 2007. "An analysis of biodiesel fuel from waste edible oil in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 838-857, June.
    3. Babatunde Oladipo & Tunde V Ojumu & Lekan M Latinwo & Eriola Betiku, 2020. "Pawpaw ( Carica papaya ) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study," Energies, MDPI, vol. 13(21), pages 1-25, November.
    4. Misra, R.D. & Murthy, M.S., 2010. "Straight vegetable oils usage in a compression ignition engine--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3005-3013, December.
    5. Haşimoğlu, Can & Ciniviz, Murat & Özsert, İbrahim & İçingür, Yakup & Parlak, Adnan & Sahir Salman, M., 2008. "Performance characteristics of a low heat rejection diesel engine operating with biodiesel," Renewable Energy, Elsevier, vol. 33(7), pages 1709-1715.
    6. Arkadiusz Jamrozik & Wojciech Tutak & Karol Grab-Rogaliński, 2021. "Combustion Stability, Performance and Emission Characteristics of a CI Engine Fueled with Diesel/n-Butanol Blends," Energies, MDPI, vol. 14(10), pages 1-20, May.
    7. George Anastopoulos & Ypatia Zannikou & Stamoulis Stournas & Stamatis Kalligeros, 2009. "Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters," Energies, MDPI, vol. 2(2), pages 1-15, June.
    8. Malhotra, Rashi & Ali, Amjad, 2019. "5-Na/ZnO doped mesoporous silica as reusable solid catalyst for biodiesel production via transesterification of virgin cottonseed oil," Renewable Energy, Elsevier, vol. 133(C), pages 606-619.
    9. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    10. Ullah, Zahoor & Bustam, Mohamad Azmi & Man, Zakaria, 2015. "Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst," Renewable Energy, Elsevier, vol. 77(C), pages 521-526.
    11. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    12. Szulczyk, Kenneth R. & McCarl, Bruce A., 2010. "Market penetration of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2426-2433, October.
    13. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    14. Al-Hwaiti, Mohammad S. & Alsbou, Eid M. & Al Haddad, Rawan M. & Osman, Ahmed I. & Jrai, Ahmed Abu & Al-Muhtaseb, Ala’a H. & Hasan, Ahmad O. & Morgan, Kevin & El-Sayed, El-Sayed M. & Al-Fatesh, Ahmed S, 2020. "Spatio-temporal analyses of extracted citrullus colocynthis seeds (Handal seed oil) as biofuel in internal combustion engine," Renewable Energy, Elsevier, vol. 166(C), pages 234-244.
    15. Ogbu, I.M. & Ajiwe, V.I.E., 2016. "FTIR studies of thermal stability of the oils and methyl esters from Afzelia africana and Hura crepitans seeds," Renewable Energy, Elsevier, vol. 96(PA), pages 203-208.
    16. Azeem, Muhammad Waqar & Hanif, Muhammad Asif & Al-Sabahi, Jamal Nasar & Khan, Asif Ali & Naz, Saima & Ijaz, Aliya, 2016. "Production of biodiesel from low priced, renewable and abundant date seed oil," Renewable Energy, Elsevier, vol. 86(C), pages 124-132.
    17. Devan, P.K. & Mahalakshmi, N.V., 2009. "A study of the performance, emission and combustion characteristics of a compression ignition engine using methyl ester of paradise oil-eucalyptus oil blends," Applied Energy, Elsevier, vol. 86(5), pages 675-680, May.
    18. Chadwick, Dara T. & McDonnell, Kevin P. & Brennan, Liam P. & Fagan, Colette C. & Everard, Colm D., 2014. "Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 672-681.
    19. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    20. Manzano-Agugliaro, F. & Sanchez-Muros, M.J. & Barroso, F.G. & Martínez-Sánchez, A. & Rojo, S. & Pérez-Bañón, C., 2012. "Insects for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3744-3753.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2057-:d:769219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.