IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v96y2016ipap203-208.html
   My bibliography  Save this article

FTIR studies of thermal stability of the oils and methyl esters from Afzelia africana and Hura crepitans seeds

Author

Listed:
  • Ogbu, I.M.
  • Ajiwe, V.I.E.

Abstract

Fourier Transform Infrared (FTIR) spectroscopy was used to study thermal stability of the oils, methyl esters and esters/diesel blends from Afzelia africana and Hura crepitans seeds in comparison with petroleum diesel. Biodiesels are prone to oxidative degradation due to their chemical nature and the degree of this varies with feedstock. Information on the thermal stability of various potential biodiesel feedstocks is very vital for their application. In this study, the samples were exposed to high temperatures between 28 °C and 300 °C for a residence time of 10 min. Fuel degradation was monitored by tracking changes in peak intensities around 3442 cm−1, 1740 cm−1, and 734 cm−1 corresponding to OH of hydroperoxides, CO of carbonyl compounds and carbon-hydrogen bending out-of-plane of CC respectively. Thermal oxidation commenced at about 150 °C with hydroperoxides formation. CO and CC bonds in the samples were shown to be fairly stable within the exposure time. Hura crepitans showed higher thermal stability than Afzelia africana.

Suggested Citation

  • Ogbu, I.M. & Ajiwe, V.I.E., 2016. "FTIR studies of thermal stability of the oils and methyl esters from Afzelia africana and Hura crepitans seeds," Renewable Energy, Elsevier, vol. 96(PA), pages 203-208.
  • Handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:203-208
    DOI: 10.1016/j.renene.2016.04.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116303573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.04.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srivastava, Anjana & Prasad, Ram, 2000. "Triglycerides-based diesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 111-133, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oraegbunam, Jennifer Chinazor & Oladipo, Babatunde & Falowo, Olayomi Abiodun & Betiku, Eriola, 2020. "Clean sandbox (Hura crepitans) oil methyl esters synthesis: A kinetic and thermodynamic study through pH monitoring approach," Renewable Energy, Elsevier, vol. 160(C), pages 526-537.
    2. Ibrahim, Ayooluwa Paul & Omilakin, Ropo Oluwasesan & Betiku, Eriola, 2019. "Optimization of microwave-assisted solvent extraction of non-edible sandbox (Hura crepitans) seed oil: A potential biodiesel feedstock," Renewable Energy, Elsevier, vol. 141(C), pages 349-358.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    2. Tsai, Wen-Tien & Lin, Chih-Chung & Yeh, Ching-Wei, 2007. "An analysis of biodiesel fuel from waste edible oil in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 838-857, June.
    3. Haşimoğlu, Can & Ciniviz, Murat & Özsert, İbrahim & İçingür, Yakup & Parlak, Adnan & Sahir Salman, M., 2008. "Performance characteristics of a low heat rejection diesel engine operating with biodiesel," Renewable Energy, Elsevier, vol. 33(7), pages 1709-1715.
    4. Malhotra, Rashi & Ali, Amjad, 2019. "5-Na/ZnO doped mesoporous silica as reusable solid catalyst for biodiesel production via transesterification of virgin cottonseed oil," Renewable Energy, Elsevier, vol. 133(C), pages 606-619.
    5. Ullah, Zahoor & Bustam, Mohamad Azmi & Man, Zakaria, 2015. "Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst," Renewable Energy, Elsevier, vol. 77(C), pages 521-526.
    6. Azeem, Muhammad Waqar & Hanif, Muhammad Asif & Al-Sabahi, Jamal Nasar & Khan, Asif Ali & Naz, Saima & Ijaz, Aliya, 2016. "Production of biodiesel from low priced, renewable and abundant date seed oil," Renewable Energy, Elsevier, vol. 86(C), pages 124-132.
    7. Chadwick, Dara T. & McDonnell, Kevin P. & Brennan, Liam P. & Fagan, Colette C. & Everard, Colm D., 2014. "Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 672-681.
    8. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    9. Manzano-Agugliaro, F. & Sanchez-Muros, M.J. & Barroso, F.G. & Martínez-Sánchez, A. & Rojo, S. & Pérez-Bañón, C., 2012. "Insects for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3744-3753.
    10. Andres Quintero, Julian & Ruth Felix, Erika & Eduardo Rincón, Luis & Crisspín, Marianella & Fernandez Baca, Jaime & Khwaja, Yasmeen & Cardona, Carlos Ariel, 2012. "Social and techno-economical analysis of biodiesel production in Peru," Energy Policy, Elsevier, vol. 43(C), pages 427-435.
    11. Szulczyk, Kenneth R. & McCarl, Bruce A. & Cornforth, Gerald, 2010. "Market penetration of ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 394-403, January.
    12. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    13. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    14. Dixit, Savita & kanakraj, Sangeeta & Rehman, A., 2012. "Linseed oil as a potential resource for bio-diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4415-4421.
    15. Jayed, M.H. & Masjuki, H.H. & Kalam, M.A. & Mahlia, T.M.I. & Husnawan, M. & Liaquat, A.M., 2011. "Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 220-235, January.
    16. de Carvalho Lopes, Daniela & Steidle Neto, Antonio José & Martins, Paulo André R., 2011. "Economic simulation of biodiesel production: SIMB-E tool," Energy Economics, Elsevier, vol. 33(6), pages 1138-1145.
    17. De Corato, Ugo & De Bari, Isabella & Viola, Egidio & Pugliese, Massimo, 2018. "Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 326-346.
    18. Banapurmath, N.R. & Tewari, P.G. & Hosmath, R.S., 2008. "Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters," Renewable Energy, Elsevier, vol. 33(9), pages 1982-1988.
    19. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
    20. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:203-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.