IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1850-d762821.html
   My bibliography  Save this article

Control Strategy of Flywheel Energy Storage System Based on Primary Frequency Modulation of Wind Power

Author

Listed:
  • Yu Jia

    (School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
    Key Laboratory of Photothermal and Wind Power Generation in Inner Mongolia, Baotou 014010, China)

  • Zhenkui Wu

    (School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
    Key Laboratory of Photothermal and Wind Power Generation in Inner Mongolia, Baotou 014010, China)

  • Jihong Zhang

    (School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
    Key Laboratory of Photothermal and Wind Power Generation in Inner Mongolia, Baotou 014010, China)

  • Peihong Yang

    (School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
    Key Laboratory of Photothermal and Wind Power Generation in Inner Mongolia, Baotou 014010, China)

  • Zilei Zhang

    (School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
    Key Laboratory of Photothermal and Wind Power Generation in Inner Mongolia, Baotou 014010, China)

Abstract

As a form of energy storage with high power and efficiency, a flywheel energy storage system performs well in the primary frequency modulation of a power grid. In this study, a three-phase permanent magnet synchronous motor was used as the drive motor of the system, and a simulation study on the control strategy of a flywheel energy storage system was conducted based on the primary frequency modulation of wind power. The speed and current double closed-loop control strategy was used in the system start-up phase, and the power and current double-closed-loop control strategy were used in the power compensation phase. The model reference adaptive control was used to accurately estimate the speed and position of the rotor. The system compensates for the wind power output by using a wind turbine in real-time and conducting simulation experiments to verify the feasibility of the charge and discharge control strategy. At the same time, it can be verified that the flywheel energy storage system has a beneficial effect on wind power frequency modulation.

Suggested Citation

  • Yu Jia & Zhenkui Wu & Jihong Zhang & Peihong Yang & Zilei Zhang, 2022. "Control Strategy of Flywheel Energy Storage System Based on Primary Frequency Modulation of Wind Power," Energies, MDPI, vol. 15(5), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1850-:d:762821
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1850/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1850/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2017. "Model-free adaptive control law for nuclear superheated-steam supply systems," Energy, Elsevier, vol. 135(C), pages 53-67.
    2. Boukettaya, Ghada & Krichen, Lotfi & Ouali, Abderrazak, 2010. "A comparative study of three different sensorless vector control strategies for a Flywheel Energy Storage System," Energy, Elsevier, vol. 35(1), pages 132-139.
    3. Elhoussin Elbouchikhi & Yassine Amirat & Gilles Feld & Mohamed Benbouzid & Zhibin Zhou, 2020. "A Lab-scale Flywheel Energy Storage System: Control Strategy and Domestic Applications," Energies, MDPI, vol. 13(3), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Tingting & Liu, Ziyuan & Zeng, Deliang & Zhu, Yansong, 2023. "Simulation and evaluation of flexible enhancement of thermal power unit coupled with flywheel energy storage array," Energy, Elsevier, vol. 281(C).
    2. José Luis Monroy-Morales & Rafael Peña-Alzola & David Campos-Gaona & Olimpo Anaya-Lara, 2022. "Complete Transitions of Hybrid Wind-Diesel Systems with Clutch and Flywheel-Based Energy Storage," Energies, MDPI, vol. 15(19), pages 1-18, September.
    3. Hongjin Hu & Haoze Wang & Kun Liu & Jingbo Wei & Xiangjie Shen, 2022. "A Simplified Space Vector Pulse Width Modulation Algorithm of a High-Speed Permanent Magnet Synchronous Machine Drive for a Flywheel Energy Storage System," Energies, MDPI, vol. 15(11), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    2. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    3. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    4. Zhang, Tianhao & Dong, Zhe & Huang, Xiaojin, 2024. "Multi-objective optimization of thermal power and outlet steam temperature for a nuclear steam supply system with deep reinforcement learning," Energy, Elsevier, vol. 286(C).
    5. Boukettaya, Ghada & Krichen, Lotfi, 2014. "A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications," Energy, Elsevier, vol. 71(C), pages 148-159.
    6. Yunlong Zhu & Zhe Dong & Xiaojin Huang & Yujie Dong & Yajun Zhang & Zuoyi Zhang, 2022. "Passivity-Based Power-Level Control of Nuclear Reactors," Energies, MDPI, vol. 15(14), pages 1-11, July.
    7. Zhe Dong & Zhonghua Cheng & Yunlong Zhu & Xiaojin Huang & Yujie Dong & Zuoyi Zhang, 2023. "Review on the Recent Progress in Nuclear Plant Dynamical Modeling and Control," Energies, MDPI, vol. 16(3), pages 1-19, February.
    8. Roberto Rocca & Savvas Papadopoulos & Mohamed Rashed & George Prassinos & Fabio Giulii Capponi & Michael Galea, 2020. "Design Trade-Offs and Feasibility Assessment of a Novel One-Body, Laminated-Rotor Flywheel Switched Reluctance Machine," Energies, MDPI, vol. 13(22), pages 1-19, November.
    9. Hui, Jiuwu, 2024. "Discrete-time sliding mode prescribed performance controller via Kalman filter and disturbance observer for load following of a pressurized water reactor," Energy, Elsevier, vol. 302(C).
    10. Zhe Dong, 2017. "Boolean Network-Based Sensor Selection with Application to the Fault Diagnosis of a Nuclear Plant," Energies, MDPI, vol. 10(12), pages 1-13, December.
    11. Kai Xu & Youguang Guo & Gang Lei & Jianguo Zhu, 2023. "A Review of Flywheel Energy Storage System Technologies," Energies, MDPI, vol. 16(18), pages 1-32, September.
    12. Patryk Gałuszkiewicz & Zbigniew Gałuszkiewicz & Janusz Baran, 2022. "Simulation Studies of Energy Recovery in a BLDC Motor-Based Kinetic Energy Storage," Energies, MDPI, vol. 15(20), pages 1-20, October.
    13. Oscar Danilo Montoya & Walter Gil-González & Edwin Rivas-Trujillo, 2020. "Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids," Energies, MDPI, vol. 13(9), pages 1-20, May.
    14. Yang, Ping & Ling, Weihao & Tian, Ke & Zeng, Min & Wang, Qiuwang, 2023. "Flow distribution and heat transfer performance of two-phase flow in parallel flow heat exchange system," Energy, Elsevier, vol. 270(C).
    15. Dong, Zhe & Cheng, Zhonghua & Zhu, Yunlong & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Coordinated control of mHTGR-based nuclear steam supply systems considering cold helium temperature," Energy, Elsevier, vol. 284(C).
    16. Wu, Shifa & Ma, Xiaolong & Liu, Junfeng & Wan, Jiashuang & Wang, Pengfei & Su, G.H., 2023. "A load following control strategy for Chinese Modular High-Temperature Gas-Cooled Reactor HTR-PM," Energy, Elsevier, vol. 263(PA).
    17. Dargahi, Vahid & Sadigh, Arash Khoshkbar & Pahlavani, Mohammad Reza Alizadeh & Shoulaie, Abbas, 2012. "DC (direct current) voltage source reduction in stacked multicell converter based energy systems," Energy, Elsevier, vol. 46(1), pages 649-663.
    18. Mohammad Reza, Alizadeh Pahlavani & Ali, Mohammadpour Hossine, 2010. "An optimized SVPWM switching strategy for three-level NPC VSI and a novel switching strategy for three-level two-quadrant chopper to stabilize the voltage of capacitors," Energy, Elsevier, vol. 35(12), pages 4917-4931.
    19. Dong, Zhe & Li, Bowen & Li, Junyi & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2021. "Flexible control of nuclear cogeneration plants for balancing intermittent renewables," Energy, Elsevier, vol. 221(C).
    20. Dong, Zhe & Li, Bowen & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2022. "Power-pressure coordinated control of modular high temperature gas-cooled reactors," Energy, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1850-:d:762821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.