IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2289-d354275.html
   My bibliography  Save this article

Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids

Author

Listed:
  • Oscar Danilo Montoya

    (Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá D.C. 11021, Colombia
    Laboratorio Inteligente de Energía, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia)

  • Walter Gil-González

    (Laboratorio Inteligente de Energía, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia)

  • Edwin Rivas-Trujillo

    (Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá D.C. 11021, Colombia)

Abstract

This paper deals with the problem of optimal location and reallocation of battery energy storage systems (BESS) in direct current (dc) microgrids with constant power loads. The optimization model that represents this problem is formulated with two objective functions. The first model corresponds to the minimization of the total daily cost of buying energy in the spot market by conventional generators and the second to the minimization of the costs of the daily energy losses in all branches of the network. Both the models are constrained by classical nonlinear power flow equations, distributed generation capabilities, and voltage regulation, among others. These formulations generate a nonlinear mixed-integer programming (MINLP) model that requires special methods to be solved. A dc microgrid composed of 21-nodes with existing BESS is used for validating the proposed mathematical formula. This system allows to identify the optimal location or reallocation points for these batteries by improving the daily operative costs regarding the base cases. All the simulations are conducted via the general algebraic modeling system, widely known as the General Algebraic Modeling System (GAMS).

Suggested Citation

  • Oscar Danilo Montoya & Walter Gil-González & Edwin Rivas-Trujillo, 2020. "Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids," Energies, MDPI, vol. 13(9), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2289-:d:354275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2289/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2289/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Javed, Muhammad Shahzad & Zhong, Dan & Ma, Tao & Song, Aotian & Ahmed, Salman, 2020. "Hybrid pumped hydro and battery storage for renewable energy based power supply system," Applied Energy, Elsevier, vol. 257(C).
    2. Walter Gil-González & Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Alberto-Jesus Perea-Moreno & Quetzalcoatl Hernandez-Escobedo, 2020. "Optimal Placement and Sizing of Wind Generators in AC Grids Considering Reactive Power Capability and Wind Speed Curves," Sustainability, MDPI, vol. 12(7), pages 1-20, April.
    3. Elhoussin Elbouchikhi & Yassine Amirat & Gilles Feld & Mohamed Benbouzid & Zhibin Zhou, 2020. "A Lab-scale Flywheel Energy Storage System: Control Strategy and Domestic Applications," Energies, MDPI, vol. 13(3), pages 1-23, February.
    4. Walter Gil-González & Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Fernando Cruz-Peragón & Gerardo Alcalá, 2020. "Economic Dispatch of Renewable Generators and BESS in DC Microgrids Using Second-Order Cone Optimization," Energies, MDPI, vol. 13(7), pages 1-15, April.
    5. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    6. Naghiloo, Ahmad & Abbaspour, Majid & Mohammadi-Ivatloo, Behnam & Bakhtari, Khosro, 2015. "GAMS based approach for optimal design and sizing of a pressure retarded osmosis power plant in Bahmanshir river of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1559-1565.
    7. Oscar Danilo Montoya & Walter Gil-González & Luis Grisales-Noreña & César Orozco-Henao & Federico Serra, 2019. "Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models," Energies, MDPI, vol. 12(23), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcel Nicola & Claudiu-Ionel Nicola & Dan Selișteanu, 2022. "Improvement of the Control of a Grid Connected Photovoltaic System Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent," Energies, MDPI, vol. 15(7), pages 1-32, March.
    2. Brandon Cortés-Caicedo & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Miguel Angel Rodriguez-Cabal & Javier Alveiro Rosero, 2022. "Energy Management System for the Optimal Operation of PV Generators in Distribution Systems Using the Antlion Optimizer: A Colombian Urban and Rural Case Study," Sustainability, MDPI, vol. 14(23), pages 1-35, December.
    3. Christoph Wenge & Robert Pietracho & Stephan Balischewski & Bartlomiej Arendarski & Pio Lombardi & Przemyslaw Komarnicki & Leszek Kasprzyk, 2020. "Multi Usage Applications of Li-Ion Battery Storage in a Large Photovoltaic Plant: A Practical Experience," Energies, MDPI, vol. 13(18), pages 1-18, September.
    4. O. D. Montoya & W. Gil-González & J. C. Hernández & D. A. Giral-Ramírez & A. Medina-Quesada, 2020. "A Mixed-Integer Nonlinear Programming Model for Optimal Reconfiguration of DC Distribution Feeders," Energies, MDPI, vol. 13(17), pages 1-22, August.
    5. Luis Fernando Grisales-Noreña & Bonie Johana Restrepo-Cuestas & Brandon Cortés-Caicedo & Jhon Montano & Andrés Alfonso Rosales-Muñoz & Marco Rivera, 2022. "Optimal Location and Sizing of Distributed Generators and Energy Storage Systems in Microgrids: A Review," Energies, MDPI, vol. 16(1), pages 1-30, December.
    6. Marcel Nicola & Claudiu-Ionel Nicola, 2021. "Fractional-Order Control of Grid-Connected Photovoltaic System Based on Synergetic and Sliding Mode Controllers," Energies, MDPI, vol. 14(2), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristian Hoyos-Velandia & Lina Ramirez-Hurtado & Jaime Quintero-Restrepo & Ricardo Moreno-Chuquen & Francisco Gonzalez-Longatt, 2022. "Cost Functions for Generation Dispatching in Microgrids for Non-Interconnected Zones in Colombia," Energies, MDPI, vol. 15(7), pages 1-14, March.
    2. O. D. Montoya & W. Gil-González & J. C. Hernández & D. A. Giral-Ramírez & A. Medina-Quesada, 2020. "A Mixed-Integer Nonlinear Programming Model for Optimal Reconfiguration of DC Distribution Feeders," Energies, MDPI, vol. 13(17), pages 1-22, August.
    3. Brandon Cortés-Caicedo & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya, 2022. "Optimal Selection of Conductor Sizes in Three-Phase Asymmetric Distribution Networks Considering Optimal Phase-Balancing: An Application of the Salp Swarm Algorithm," Mathematics, MDPI, vol. 10(18), pages 1-34, September.
    4. Andrés Felipe Buitrago-Velandia & Oscar Danilo Montoya & Walter Gil-González, 2021. "Dynamic Reactive Power Compensation in Power Systems through the Optimal Siting and Sizing of Photovoltaic Sources," Resources, MDPI, vol. 10(5), pages 1-17, May.
    5. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    6. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    7. Kong, Xue & Wang, Hongye & Li, Nan & Mu, Hailin, 2022. "Multi-objective optimal allocation and performance evaluation for energy storage in energy systems," Energy, Elsevier, vol. 253(C).
    8. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    9. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
    10. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Mikulik, Jerzy, 2021. "A hybrid method for scenario-based techno-economic-environmental analysis of off-grid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. Oscar Danilo Montoya & Jorge Alexander Alarcon-Villamil & Jesus C. Hernández, 2021. "Operating Cost Reduction in Distribution Networks Based on the Optimal Phase-Swapping including the Costs of the Working Groups and Energy Losses," Energies, MDPI, vol. 14(15), pages 1-22, July.
    12. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    13. Naderipour, Amirreza & Ramtin, Amir Reza & Abdullah, Aldrin & Marzbali, Massoomeh Hedayati & Nowdeh, Saber Arabi & Kamyab, Hesam, 2022. "Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis," Energy, Elsevier, vol. 239(PD).
    14. Murugaperumal Krishnamoorthy & P. Ajay-D-Vimal Raj & N. P. Subramaniam & M. Sudhakaran & Arulselvi Ramasamy, 2023. "Design and Development of Optimal and Deep-Learning-Based Demand Response Technologies for Residential Hybrid Renewable Energy Management System," Sustainability, MDPI, vol. 15(18), pages 1-26, September.
    15. Roberto Rocca & Savvas Papadopoulos & Mohamed Rashed & George Prassinos & Fabio Giulii Capponi & Michael Galea, 2020. "Design Trade-Offs and Feasibility Assessment of a Novel One-Body, Laminated-Rotor Flywheel Switched Reluctance Machine," Energies, MDPI, vol. 13(22), pages 1-19, November.
    16. Wesseh, Presley K. & Benjamin, Nelson I. & Lin, Boqiang, 2022. "The coordination of pumped hydro storage, electric vehicles, and climate policy in imperfect electricity markets: Insights from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    17. Julián Alejandro Vega-Forero & Jairo Stiven Ramos-Castellanos & Oscar Danilo Montoya, 2023. "Application of the Generalized Normal Distribution Optimization Algorithm to the Optimal Selection of Conductors in Three-Phase Asymmetric Distribution Networks," Energies, MDPI, vol. 16(3), pages 1-35, January.
    18. Kai Xu & Youguang Guo & Gang Lei & Jianguo Zhu, 2023. "A Review of Flywheel Energy Storage System Technologies," Energies, MDPI, vol. 16(18), pages 1-32, September.
    19. Giacomo Talluri & Gabriele Maria Lozito & Francesco Grasso & Carlos Iturrino Garcia & Antonio Luchetta, 2021. "Optimal Battery Energy Storage System Scheduling within Renewable Energy Communities," Energies, MDPI, vol. 14(24), pages 1-23, December.
    20. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2289-:d:354275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.