IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i9p10141-10152d55829.html
   My bibliography  Save this article

Experimental Research on Water Boiling Heat Transfer on Horizontal Copper Rod Surface at Sub-Atmospheric Pressure

Author

Listed:
  • Li-Hua Yu

    (College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

  • Shu-Xue Xu

    (College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

  • Guo-Yuan Ma

    (College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

  • Jun Wang

    (College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract

In recent years, water (R718) as a kind of natural refrigerant—which is environmentally-friendly, safe and cheap—has been reconsidered by scholars. The systems of using water as the refrigerant, such as water vapor compression refrigeration and heat pump systems run at sub-atmospheric pressure. So, the research on water boiling heat transfer at sub-atmospheric pressure has been an important issue. There are many research papers on the evaporation of water, but there is a lack of data on the characteristics at sub-atmospheric pressures, especially lower than 3 kPa (the saturation temperature is 24 °C). In this paper, the experimental research on water boiling heat transfer on a horizontal copper rod surface at 1.8–3.3 kPa is presented. Regression equations of the boiling heat transfer coefficient are obtained based on the experimental data, which are convenient for practical application.

Suggested Citation

  • Li-Hua Yu & Shu-Xue Xu & Guo-Yuan Ma & Jun Wang, 2015. "Experimental Research on Water Boiling Heat Transfer on Horizontal Copper Rod Surface at Sub-Atmospheric Pressure," Energies, MDPI, vol. 8(9), pages 1-12, September.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:9:p:10141-10152:d:55829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/9/10141/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/9/10141/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tommaso Toppi & Tommaso Villa & Salvatore Vasta & Walter Mittelbach & Angelo Freni, 2022. "Testing of a Falling-Film Evaporator for Adsorption Chillers," Energies, MDPI, vol. 15(5), pages 1-14, February.
    2. Lin Du & Yubo Wang & Wujing Wang & Xiangxiang Chen, 2018. "Studies on a Thermal Fault Simulation Device and the Pyrolysis Process of Insulating Oil," Energies, MDPI, vol. 11(12), pages 1-16, December.
    3. Gharzi, Mostafa & Kermani, Ali M. & Tash Shamsabadi, Hosseinali, 2023. "Experimental investigation of a parabolic trough collector-thermoelectric generator (PTC-TEG) hybrid solar system with a pressurized heat transfer fluid," Renewable Energy, Elsevier, vol. 202(C), pages 270-279.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:9:p:10141-10152:d:55829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.