IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3493-d573846.html
   My bibliography  Save this article

Accessible Battery Model with Aging Dependency

Author

Listed:
  • Christophe Savard

    (Mainate Labs, rue Notre Dame de l’Oratoire, 43270 Allègre, France)

  • Emiliia Iakovleva

    (General Electrical Engineering Department Saint Petersburg Mining University, 2, 21st Line, 199106 St Petersburg, Russia)

  • Daniil Ivanchenko

    (General Electrical Engineering Department Saint Petersburg Mining University, 2, 21st Line, 199106 St Petersburg, Russia)

  • Anton Rassõlkin

    (Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

Abstract

Designed to store and discharge electrical energy, rechargeable batteries consist of elementary storage cell assemblies. Aging is affected by various aggravating factors, mainly temperature. There are many electric or electrochemical models which describe their operation. Most standard models do not consider the aging phenomena of batteries and their consequences, while batteries deteriorate when used or stored. Precisely, most battery models do not simulate the influence of cell aging on other cells. The model presented in this paper incorporates aging and the effects of mutual interactions between cells. The model can be established based on four measurement points on the cell characteristic curve and allows the simulation of a single cell’s or multiple coupled cells’ behavior. The model can then be easily implemented in simulation software like Matlab.

Suggested Citation

  • Christophe Savard & Emiliia Iakovleva & Daniil Ivanchenko & Anton Rassõlkin, 2021. "Accessible Battery Model with Aging Dependency," Energies, MDPI, vol. 14(12), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3493-:d:573846
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3493/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3493/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ajaykumar Unagar & Yuan Tian & Manuel Arias Chao & Olga Fink, 2021. "Learning to Calibrate Battery Models in Real-Time with Deep Reinforcement Learning," Energies, MDPI, vol. 14(5), pages 1-12, March.
    2. Li, Yang & Vilathgamuwa, Mahinda & Choi, San Shing & Farrell, Troy W. & Tran, Ngoc Tham & Teague, Joseph, 2019. "Development of a degradation-conscious physics-based lithium-ion battery model for use in power system planning studies," Applied Energy, Elsevier, vol. 248(C), pages 512-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daud Mustafa Minhas & Josef Meiers & Georg Frey, 2022. "Electric Vehicle Battery Storage Concentric Intelligent Home Energy Management System Using Real Life Data Sets," Energies, MDPI, vol. 15(5), pages 1-29, February.
    2. Yuriy Leonidovich Zhukovskiy & Margarita Sergeevna Kovalchuk & Daria Evgenievna Batueva & Nikita Dmitrievich Senchilo, 2021. "Development of an Algorithm for Regulating the Load Schedule of Educational Institutions Based on the Forecast of Electric Consumption within the Framework of Application of the Demand Response," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    3. Xiaoyu Li & Chuxin Wu & Chen Fu & Shanpu Zheng & Jindong Tian, 2022. "State Characterization of Lithium-Ion Battery Based on Ultrasonic Guided Wave Scanning," Energies, MDPI, vol. 15(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yang & Vilathgamuwa, Mahinda & Choi, San Shing & Xiong, Binyu & Tang, Jinrui & Su, Yixin & Wang, Yu, 2020. "Design of minimum cost degradation-conscious lithium-ion battery energy storage system to achieve renewable power dispatchability," Applied Energy, Elsevier, vol. 260(C).
    2. Li, Changlong & Cui, Naxin & Wang, Chunyu & Zhang, Chenghui, 2021. "Reduced-order electrochemical model for lithium-ion battery with domain decomposition and polynomial approximation methods," Energy, Elsevier, vol. 221(C).
    3. Li, Changlong & Cui, Naxin & Chang, Long & Cui, Zhongrui & Yuan, Haitao & Zhang, Chenghui, 2022. "Effect of parallel connection topology on air-cooled lithium-ion battery module: Inconsistency analysis and comprehensive evaluation," Applied Energy, Elsevier, vol. 313(C).
    4. Wei, Zhongbao & Zhao, Difan & He, Hongwen & Cao, Wanke & Dong, Guangzhong, 2020. "A noise-tolerant model parameterization method for lithium-ion battery management system," Applied Energy, Elsevier, vol. 268(C).
    5. Mikel Arrinda & Gorka Vertiz & Denis Sanchéz & Aitor Makibar & Haritz Macicior, 2022. "Surrogate Model of the Optimum Global Battery Pack Thermal Management System Control," Energies, MDPI, vol. 15(5), pages 1-20, February.
    6. Radet, Hugo & Roboam, Xavier & Sareni, Bruno & Rigo-Mariani, Rémy, 2021. "Dynamic aware aging design of a simple distributed energy system: A comparative approach with single stage design strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Vykhodtsev, Anton V. & Jang, Darren & Wang, Qianpu & Rosehart, William & Zareipour, Hamidreza, 2022. "A review of modelling approaches to characterize lithium-ion battery energy storage systems in techno-economic analyses of power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    8. Zhao, Xinyi & Shen, Xinwei & Guo, Qinglai & Sun, Hongbin & Oren, Shmuel S., 2020. "A stochastic distribution system planning method considering regulation services and energy storage degradation," Applied Energy, Elsevier, vol. 277(C).
    9. Gu, Yuxuan & Wang, Jianxiao & Chen, Yuanbo & Xiao, Wei & Deng, Zhongwei & Chen, Qixin, 2023. "A simplified electro-chemical lithium-ion battery model applicable for in situ monitoring and online control," Energy, Elsevier, vol. 264(C).
    10. Maheshwari, Arpit & Paterakis, Nikolaos G. & Santarelli, Massimo & Gibescu, Madeleine, 2020. "Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3493-:d:573846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.