IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1670-d756914.html
   My bibliography  Save this article

Research on Energy-Capture Characteristics of a Direct-Drive Wave-Energy Converter Based on Parallel Mechanism

Author

Listed:
  • Tao Yao

    (School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
    National Engineering Research Center for Technological Innovation Method and Tool, Hebei University of Technology, Tianjin 300130, China)

  • Yulong Wang

    (School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
    National Engineering Research Center for Technological Innovation Method and Tool, Hebei University of Technology, Tianjin 300130, China)

  • Zhihua Wang

    (School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China)

  • Tongxian Li

    (School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
    National Engineering Research Center for Technological Innovation Method and Tool, Hebei University of Technology, Tianjin 300130, China)

  • Zhipeng Tan

    (School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
    National Engineering Research Center for Technological Innovation Method and Tool, Hebei University of Technology, Tianjin 300130, China)

Abstract

Aiming at the capture and conversion of multidirection wave energy, a multifreedom direct-drive wave-energy converter (WEC) based on a parallel mechanism is studied. The dynamic model of WEC was conducted based on force analysis and hydrodynamic theory, and the inverse kinematic solutions of each branch chain of the mechanism were obtained following the space vector method. Furthermore, the kinetics response of the linear generator branch chain was obtained. Moreover, the influence on the capture efficiency of the device’s geometric structure scale was investigated under different sea conditions. To evaluate the performance of the WEC, a linear generator model was simulated and analyzed by COMSOL Multiphysics. A laboratory prototype was manufactured. The test results indicated that the multifreedom device can achieve better power conversion performance than traditional single degree of freedom (DOF) devices. This study provides ideas for the design and development of large multi-DOF wave-energy-conversion devices.

Suggested Citation

  • Tao Yao & Yulong Wang & Zhihua Wang & Tongxian Li & Zhipeng Tan, 2022. "Research on Energy-Capture Characteristics of a Direct-Drive Wave-Energy Converter Based on Parallel Mechanism," Energies, MDPI, vol. 15(5), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1670-:d:756914
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1670/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1670/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lejerskog, Erik & Boström, Cecilia & Hai, Ling & Waters, Rafael & Leijon, Mats, 2015. "Experimental results on power absorption from a wave energy converter at the Lysekil wave energy research site," Renewable Energy, Elsevier, vol. 77(C), pages 9-14.
    2. Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
    3. Siegel, Stefan G., 2019. "Numerical benchmarking study of a Cycloidal Wave Energy Converter," Renewable Energy, Elsevier, vol. 134(C), pages 390-405.
    4. Son, Daewoong & Belissen, Valentin & Yeung, Ronald W., 2016. "Performance validation and optimization of a dual coaxial-cylinder ocean-wave energy extractor," Renewable Energy, Elsevier, vol. 92(C), pages 192-201.
    5. Tunde Aderinto & Hua Li, 2020. "Conceptual Design and Simulation of a Self-Adjustable Heaving Point Absorber Based Wave Energy Converter," Energies, MDPI, vol. 13(8), pages 1-15, April.
    6. Cargo, C.J. & Hillis, A.J. & Plummer, A.R., 2016. "Strategies for active tuning of Wave Energy Converter hydraulic power take-off mechanisms," Renewable Energy, Elsevier, vol. 94(C), pages 32-47.
    7. Younesian, Davood & Alam, Mohammad-Reza, 2017. "Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting," Applied Energy, Elsevier, vol. 197(C), pages 292-302.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    2. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    3. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H. & Chen, Mingjie & Nazari, Rouzbeh, 2024. "Advancements in optimizing wave energy converter geometry utilizing metaheuristic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    4. Zhang, Haicheng & Xi, Ru & Xu, Daolin & Wang, Kai & Shi, Qijia & Zhao, Huai & Wu, Bo, 2019. "Efficiency enhancement of a point wave energy converter with a magnetic bistable mechanism," Energy, Elsevier, vol. 181(C), pages 1152-1165.
    5. Bechlenberg, Alva & Wei, Yanji & Jayawardhana, Bayu & Vakis, Antonis I., 2023. "Analysing the influence of power take-off adaptability on the power extraction of dense wave energy converter arrays," Renewable Energy, Elsevier, vol. 211(C), pages 1-12.
    6. Chen, Zhongfei & Zhou, Binzhen & Zhang, Liang & Li, Can & Zang, Jun & Zheng, Xiongbo & Xu, Jianan & Zhang, Wanchao, 2018. "Experimental and numerical study on a novel dual-resonance wave energy converter with a built-in power take-off system," Energy, Elsevier, vol. 165(PA), pages 1008-1020.
    7. Sun, Pengyuan & Liu, Senming & He, Hongzhou & Zhao, Yingru & Zheng, Songgen & Chen, Hu & Yang, Shaohui, 2021. "Simulated and experimental investigation of a floating-array-buoys wave energy converter with single-point mooring," Renewable Energy, Elsevier, vol. 176(C), pages 637-650.
    8. Chen, Weixing & Wu, Zheng & Liu, Jimu & Jin, Zhenlin & Zhang, Xiantao & Gao, Feng, 2021. "Efficiency analysis of a 3-DOF wave energy converter (SJTU-WEC) based on modeling, simulation and experiment," Energy, Elsevier, vol. 220(C).
    9. Rodríguez, Claudio A. & Rosa-Santos, Paulo & Taveira-Pinto, Francisco, 2019. "Assessment of damping coefficients of power take-off systems of wave energy converters: A hybrid approach," Energy, Elsevier, vol. 169(C), pages 1022-1038.
    10. Zhang, Xiantao & Tian, XinLiang & Xiao, Longfei & Li, Xin & Lu, Wenyue, 2019. "Mechanism and sensitivity for broadband energy harvesting of an adaptive bistable point absorber wave energy converter," Energy, Elsevier, vol. 188(C).
    11. Zhang, Xiantao & Tian, Xinliang & Xiao, Longfei & Li, Xin & Chen, Lifen, 2018. "Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter," Applied Energy, Elsevier, vol. 228(C), pages 450-467.
    12. Elie Al Shami & Ran Zhang & Xu Wang, 2018. "Point Absorber Wave Energy Harvesters: A Review of Recent Developments," Energies, MDPI, vol. 12(1), pages 1-36, December.
    13. Xu, Sheng & Wang, Shan & Guedes Soares, C., 2019. "Review of mooring design for floating wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 595-621.
    14. Erfan Amini & Rojin Asadi & Danial Golbaz & Mahdieh Nasiri & Seyed Taghi Omid Naeeni & Meysam Majidi Nezhad & Giuseppe Piras & Mehdi Neshat, 2021. "Comparative Study of Oscillating Surge Wave Energy Converter Performance: A Case Study for Southern Coasts of the Caspian Sea," Sustainability, MDPI, vol. 13(19), pages 1-21, October.
    15. Ji, Xueyu & Shami, Elie Al & Monty, Jason & Wang, Xu, 2020. "Modelling of linear and non-linear two-body wave energy converters under regular and irregular wave conditions," Renewable Energy, Elsevier, vol. 147(P1), pages 487-501.
    16. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    17. Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Faÿ, F.-X., 2016. "Latching control of a floating oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 90(C), pages 229-241.
    18. Qiao Li & Motohiko Murai & Syu Kuwada, 2018. "A Study on Electrical Power for Multiple Linear Wave Energy Converter Considering the Interaction Effect," Energies, MDPI, vol. 11(11), pages 1-20, November.
    19. Xu, Xingkun & Sasmal, Kaushik & Wen, Yi & Xu, Haihua & Ma, Peifeng & Tkalich, Pavel & Lin, Pengzhi, 2024. "An integrated approach for the decision of wave energy converter deployment based on forty-five-years high-resolution wave climate modeling," Energy, Elsevier, vol. 305(C).
    20. He, Zechen & Ning, Dezhi & Gou, Ying & Zhou, Zhimin, 2022. "Wave energy converter optimization based on differential evolution algorithm," Energy, Elsevier, vol. 246(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1670-:d:756914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.