Experimental investigation of an annular sector OWC device incorporated into a dual cylindrical caisson breakwater
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.118681
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
- López, I. & Castro, A. & Iglesias, G., 2015. "Hydrodynamic performance of an oscillating water column wave energy converter by means of particle imaging velocimetry," Energy, Elsevier, vol. 83(C), pages 89-103.
- Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
- Vyzikas, Thomas & Deshoulières, Samy & Barton, Matthew & Giroux, Olivier & Greaves, Deborah & Simmonds, Dave, 2017. "Experimental investigation of different geometries of fixed oscillating water column devices," Renewable Energy, Elsevier, vol. 104(C), pages 248-258.
- Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2017. "Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter," Renewable Energy, Elsevier, vol. 105(C), pages 209-231.
- Setoguchi, T. & Santhakumar, S. & Takao, M. & Kim, T.H. & Kaneko, K., 2003. "A modified Wells turbine for wave energy conversion," Renewable Energy, Elsevier, vol. 28(1), pages 79-91.
- Ning, De-Zhi & Wang, Rong-Quan & Gou, Ying & Zhao, Ming & Teng, Bin, 2016. "Numerical and experimental investigation of wave dynamics on a land-fixed OWC device," Energy, Elsevier, vol. 115(P1), pages 326-337.
- Zheng, Siming & Zhang, Yongliang & Iglesias, Gregorio, 2020. "Power capture performance of hybrid wave farms combining different wave energy conversion technologies: The H-factor," Energy, Elsevier, vol. 204(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Chen & Zhang, Yongliang, 2021. "Numerical investigation on the wave power extraction for a 3D dual-chamber oscillating water column system composed of two closely connected circular sub-units," Applied Energy, Elsevier, vol. 295(C).
- Mayon, Robert & Ning, Dezhi & Zhang, Chongwei & Chen, Lifen & Wang, Rongquan, 2021. "Wave energy capture by an omnidirectional point sink oscillating water column system," Applied Energy, Elsevier, vol. 304(C).
- Ayrton Alfonso Medina Rodríguez & Gregorio Posada Vanegas & Rodolfo Silva Casarín & Edgar Gerardo Mendoza Baldwin & Beatriz Edith Vega Serratos & Felipe Ernesto Puc Cutz & Enrique Alejandro Mangas Che, 2022. "Experimental Investigation of the Hydrodynamic Performance of Land-Fixed Nearshore and Onshore Oscillating Water Column Systems with a Thick Front Wall," Energies, MDPI, vol. 15(7), pages 1-26, March.
- Qu, Ming & Yu, Dingyong & Xu, Zhigang & Gao, Zhiyang, 2022. "The effect of the elliptical front wall on energy conversion performance of the offshore OWC chamber: A numerical study," Energy, Elsevier, vol. 255(C).
- Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- Yang, Can & Xu, Tingting & Wan, Chang & Liu, Hengxu & Su, Zuohang & Zhao, Lujun & Chen, Hailong & Johanning, Lars, 2023. "Numerical investigation of a dual cylindrical OWC hybrid system incorporated into a fixed caisson breakwater," Energy, Elsevier, vol. 263(PE).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
- Liu, Zhen & Xu, Chuanli & Qu, Na & Cui, Ying & Kim, Kilwon, 2020. "Overall performance evaluation of a model-scale OWC wave energy converter," Renewable Energy, Elsevier, vol. 149(C), pages 1325-1338.
- Mayon, Robert & Ning, Dezhi & Zhang, Chongwei & Chen, Lifen & Wang, Rongquan, 2021. "Wave energy capture by an omnidirectional point sink oscillating water column system," Applied Energy, Elsevier, vol. 304(C).
- Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Choi, Jongsu & Hyun, Beom-soo, 2021. "An integrated numerical model for the chamber-turbine system of an oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
- Fox, Brooklyn N. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Analysis of oscillating-water-column wave energy converter configurations for integration into caisson breakwaters," Applied Energy, Elsevier, vol. 295(C).
- Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2022. "Hydrodynamic performance of a heaving oscillating water column device restrained by a spring-damper system," Renewable Energy, Elsevier, vol. 187(C), pages 331-346.
- Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2022. "Numerical investigation of offshore oscillating water column devices," Renewable Energy, Elsevier, vol. 191(C), pages 380-393.
- Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2021. "Numerical investigation of scaling effect in two-dimensional oscillating water column wave energy devices for harvesting wave energy," Renewable Energy, Elsevier, vol. 178(C), pages 1381-1397.
- Çelik, Anıl & Altunkaynak, Abdüsselam, 2020. "Determination of damping coefficient experimentally and mathematical vibration modelling of OWC surface fluctuations," Renewable Energy, Elsevier, vol. 147(P1), pages 1909-1920.
- Jin, Huaqing & Zhang, Haicheng & Xu, Daolin & Jun, Ding & Ze, Sun, 2022. "Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness," Renewable Energy, Elsevier, vol. 196(C), pages 1029-1047.
- Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2022. "Wave power extraction for an oscillating water column device consisting of a surging front and back lip-wall: An analytical study," Renewable Energy, Elsevier, vol. 184(C), pages 100-114.
- He, Fang & Pan, Jiapeng & Lin, Yuan & Song, Mengxia & Zheng, Siming, 2024. "Laboratory modelling of nonlinear power take-off damping and its effects on an offshore stationary cylindrical OWC device," Energy, Elsevier, vol. 296(C).
- Zheng, Siming & Zhu, Guixun & Simmonds, David & Greaves, Deborah & Iglesias, Gregorio, 2020. "Wave power extraction from a tubular structure integrated oscillating water column," Renewable Energy, Elsevier, vol. 150(C), pages 342-355.
- Wang, Rong-quan & Ning, De-zhi, 2020. "Dynamic analysis of wave action on an OWC wave energy converter under the influence of viscosity," Renewable Energy, Elsevier, vol. 150(C), pages 578-588.
- Zabala, I. & Henriques, J.C.C. & Blanco, J.M. & Gomez, A. & Gato, L.M.C. & Bidaguren, I. & Falcão, A.F.O. & Amezaga, A. & Gomes, R.P.F., 2019. "Wave-induced real-fluid effects in marine energy converters: Review and application to OWC devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 535-549.
- Guo, Baoming & Ning, Dezhi & Wang, Rongquan & Ding, Boyin, 2021. "Hydrodynamics of an oscillating water column WEC - Breakwater integrated system with a pitching front-wall," Renewable Energy, Elsevier, vol. 176(C), pages 67-80.
- Çelik, Anıl & Altunkaynak, Abdüsselam, 2019. "Experimental investigations on the performance of a fixed-oscillating water column type wave energy converter," Energy, Elsevier, vol. 188(C).
- Çelik, Anıl & Altunkaynak, Abdüsselam, 2021. "An in depth experimental investigation into effects of incident wave characteristics front wall opening and PTO damping on the water column displacement and air differential pressure in an OWC chamber," Energy, Elsevier, vol. 230(C).
- Wang, Yuhan & Dong, Sheng, 2023. "Analytical investigation on a wave energy converter-dual-arc breakwater integration system," Energy, Elsevier, vol. 285(C).
More about this item
Keywords
Hydrodynamic efficiency; Annular sector chamber; OWC; Dual cylindrical caisson; Pressure method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220317898. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.