IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v211y2023icp1-12.html
   My bibliography  Save this article

Analysing the influence of power take-off adaptability on the power extraction of dense wave energy converter arrays

Author

Listed:
  • Bechlenberg, Alva
  • Wei, Yanji
  • Jayawardhana, Bayu
  • Vakis, Antonis I.

Abstract

The aim of this work is to assess the influence of different degrees of adaptability of the power take-off (PTO) system on the power absorption of dense wave energy converter (WEC) arrays. The adaptability is included in simulations through a transmission ratio that scales the force actuating the PTO relative to the force generated by the motion of a floater. A numerical model is used in which hydrodynamic interactions between floaters and nonlinearities in the PTO are considered. The lower computational cost of this numerical model makes it possible to study the power extraction of a dense WEC array in irregular waves to easily create power matrices and other performance metrics. The methodology is applied to the case study of the Ocean Grazer WEC to showcase the potential performance improvements achieved through the inclusion of a transmission ratio. The analysis shows that including a high degree of adaptability and choosing WEC array configurations and PTO designs specific to potential deployment locations early in the design process can lead to an increase in extracted power.

Suggested Citation

  • Bechlenberg, Alva & Wei, Yanji & Jayawardhana, Bayu & Vakis, Antonis I., 2023. "Analysing the influence of power take-off adaptability on the power extraction of dense wave energy converter arrays," Renewable Energy, Elsevier, vol. 211(C), pages 1-12.
  • Handle: RePEc:eee:renene:v:211:y:2023:i:c:p:1-12
    DOI: 10.1016/j.renene.2023.04.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123005268
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Jinming & Yao, Yingxue & Zhou, Liang & Göteman, Malin, 2018. "Real-time latching control strategies for the solo Duck wave energy converter in irregular waves," Applied Energy, Elsevier, vol. 222(C), pages 717-728.
    2. Cargo, C.J. & Hillis, A.J. & Plummer, A.R., 2016. "Strategies for active tuning of Wave Energy Converter hydraulic power take-off mechanisms," Renewable Energy, Elsevier, vol. 94(C), pages 32-47.
    3. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    4. Vakis, Antonis I. & Anagnostopoulos, John S., 2016. "Mechanical design and modeling of a single-piston pump for the novel power take-off system of a wave energy converter," Renewable Energy, Elsevier, vol. 96(PA), pages 531-547.
    5. Sinha, Ashank & Karmakar, D. & Guedes Soares, C., 2016. "Performance of optimally tuned arrays of heaving point absorbers," Renewable Energy, Elsevier, vol. 92(C), pages 517-531.
    6. Rusu, Eugen & Onea, Florin, 2016. "Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands," Renewable Energy, Elsevier, vol. 85(C), pages 687-703.
    7. Babarit, A., 2015. "A database of capture width ratio of wave energy converters," Renewable Energy, Elsevier, vol. 80(C), pages 610-628.
    8. Dina Silva & Eugen Rusu & Carlos Guedes Soares, 2013. "Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore," Energies, MDPI, vol. 6(3), pages 1-21, March.
    9. Goggins, Jamie & Finnegan, William, 2014. "Shape optimisation of floating wave energy converters for a specified wave energy spectrum," Renewable Energy, Elsevier, vol. 71(C), pages 208-220.
    10. Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.
    11. Son, Daewoong & Yeung, Ronald W., 2017. "Optimizing ocean-wave energy extraction of a dual coaxial-cylinder WEC using nonlinear model predictive control," Applied Energy, Elsevier, vol. 187(C), pages 746-757.
    12. Wei, Y. & Barradas-Berglind, J.J. & van Rooij, M. & Prins, W.A. & Jayawardhana, B. & Vakis, A.I., 2017. "Investigating the adaptability of the multi-pump multi-piston power take-off system for a novel wave energy converter," Renewable Energy, Elsevier, vol. 111(C), pages 598-610.
    13. Wei, Y. & Barradas-Berglind, J.J. & Yu, Z. & van Rooij, M. & Prins, W.A. & Jayawardhana, B. & Vakis, A.I., 2019. "Frequency-domain hydrodynamic modelling of dense and sparse arrays of wave energy converters," Renewable Energy, Elsevier, vol. 135(C), pages 775-788.
    14. Younesian, Davood & Alam, Mohammad-Reza, 2017. "Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting," Applied Energy, Elsevier, vol. 197(C), pages 292-302.
    15. Penalba, Markel & Ringwood, John V., 2019. "A high-fidelity wave-to-wire model for wave energy converters," Renewable Energy, Elsevier, vol. 134(C), pages 367-378.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Weixing & Wu, Zheng & Liu, Jimu & Jin, Zhenlin & Zhang, Xiantao & Gao, Feng, 2021. "Efficiency analysis of a 3-DOF wave energy converter (SJTU-WEC) based on modeling, simulation and experiment," Energy, Elsevier, vol. 220(C).
    2. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    3. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    4. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H. & Chen, Mingjie & Nazari, Rouzbeh, 2024. "Advancements in optimizing wave energy converter geometry utilizing metaheuristic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    5. Wang, Yingguang & Wang, Lifu, 2018. "Towards realistically predicting the power outputs of wave energy converters: Nonlinear simulation," Energy, Elsevier, vol. 144(C), pages 120-128.
    6. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    7. Lavidas, George, 2020. "Selection index for Wave Energy Deployments (SIWED): A near-deterministic index for wave energy converters," Energy, Elsevier, vol. 196(C).
    8. Yadong Wen & Weijun Wang & Hua Liu & Longbo Mao & Hongju Mi & Wenqiang Wang & Guoping Zhang, 2018. "A Shape Optimization Method of a Specified Point Absorber Wave Energy Converter for the South China Sea," Energies, MDPI, vol. 11(10), pages 1-22, October.
    9. Zhang, Xiantao & Tian, XinLiang & Xiao, Longfei & Li, Xin & Lu, Wenyue, 2019. "Mechanism and sensitivity for broadband energy harvesting of an adaptive bistable point absorber wave energy converter," Energy, Elsevier, vol. 188(C).
    10. Zhang, Xiantao & Tian, Xinliang & Xiao, Longfei & Li, Xin & Chen, Lifen, 2018. "Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter," Applied Energy, Elsevier, vol. 228(C), pages 450-467.
    11. Yue, Xuhui & Geng, Dazhou & Chen, Qijuan & Zheng, Yang & Gao, Gongzheng & Xu, Lei, 2021. "2-D lookup table based MPPT: Another choice of improving the generating capacity of a wave power system," Renewable Energy, Elsevier, vol. 179(C), pages 625-640.
    12. Wei, Y. & Barradas-Berglind, J.J. & Yu, Z. & van Rooij, M. & Prins, W.A. & Jayawardhana, B. & Vakis, A.I., 2019. "Frequency-domain hydrodynamic modelling of dense and sparse arrays of wave energy converters," Renewable Energy, Elsevier, vol. 135(C), pages 775-788.
    13. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    14. George Lavidas & Francesco De Leo & Giovanni Besio, 2020. "Blue Growth Development in the Mediterranean Sea: Quantifying the Benefits of an Integrated Wave Energy Converter at Genoa Harbour," Energies, MDPI, vol. 13(16), pages 1-14, August.
    15. George Lavidas & Vengatesan Venugopal, 2018. "Energy Production Benefits by Wind and Wave Energies for the Autonomous System of Crete," Energies, MDPI, vol. 11(10), pages 1-14, October.
    16. Lavidas, George & Venugopal, Vengatesan, 2017. "A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea," Renewable Energy, Elsevier, vol. 103(C), pages 401-417.
    17. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    18. Gianmaria Giannini & Paulo Rosa-Santos & Victor Ramos & Francisco Taveira-Pinto, 2020. "On the Development of an Offshore Version of the CECO Wave Energy Converter," Energies, MDPI, vol. 13(5), pages 1-24, February.
    19. Ulazia, Alain & Penalba, Markel & Ibarra-Berastegui, Gabriel & Ringwood, John & Sáenz, Jon, 2019. "Reduction of the capture width of wave energy converters due to long-term seasonal wave energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    20. Garcia-Teruel, A. & Forehand, D.I.M., 2021. "A review of geometry optimisation of wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:211:y:2023:i:c:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.