IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v165y2018ipap1008-1020.html
   My bibliography  Save this article

Experimental and numerical study on a novel dual-resonance wave energy converter with a built-in power take-off system

Author

Listed:
  • Chen, Zhongfei
  • Zhou, Binzhen
  • Zhang, Liang
  • Li, Can
  • Zang, Jun
  • Zheng, Xiongbo
  • Xu, Jianan
  • Zhang, Wanchao

Abstract

A new concept of point-absorber wave energy converter (WEC) with a waterproof outer-floater and a built-in power take-off (BI-PTO) mechanism, named Dual-Resonance WEC (DR-WEC), is put forward and investigated by experiments and numerical simulations. The BI-PTO mechanism includes spring, sliding-mass and damping systems, where the spring system is the most complicated and should be designed specially. A 1:10 scale model is designed. The mechanical performance of the BI-PTO system is investigated by a bench test. The results have shown that the design is feasible, and the added inertia effect of the BI-PTO has a negative influence on the power output. The average mechanical efficiency of the BI-PTO is 65.8% with maximum up to 80.0%. The motion and power responses of the DR-WEC are studied by a wave tank experiment and a linear numerical model with corrected mechanical added mass and viscosity. The viscous added mass and damping correction coefficients are obtained by a free decay test. The good agreement between the experimental measurements and numerical simulations has indicated that the present numerical model with corrections is of enough accuracy and the effects of mooring system and other degree of freedoms on the heave motion and power responses can be ignored.

Suggested Citation

  • Chen, Zhongfei & Zhou, Binzhen & Zhang, Liang & Li, Can & Zang, Jun & Zheng, Xiongbo & Xu, Jianan & Zhang, Wanchao, 2018. "Experimental and numerical study on a novel dual-resonance wave energy converter with a built-in power take-off system," Energy, Elsevier, vol. 165(PA), pages 1008-1020.
  • Handle: RePEc:eee:energy:v:165:y:2018:i:pa:p:1008-1020
    DOI: 10.1016/j.energy.2018.09.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218318589
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markel Penalba & John V. Ringwood, 2016. "A Review of Wave-to-Wire Models for Wave Energy Converters," Energies, MDPI, vol. 9(7), pages 1-45, June.
    2. Cordonnier, J. & Gorintin, F. & De Cagny, A. & Clément, A.H. & Babarit, A., 2015. "SEAREV: Case study of the development of a wave energy converter," Renewable Energy, Elsevier, vol. 80(C), pages 40-52.
    3. Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
    4. Joseba Lasa & Juan Carlos Antolin & Carlos Angulo & Patxi Estensoro & Maider Santos & Pierpaolo Ricci, 2012. "Design, Construction and Testing of a Hydraulic Power Take-Off for Wave Energy Converters," Energies, MDPI, vol. 5(6), pages 1-23, June.
    5. Uihlein, Andreas & Magagna, Davide, 2016. "Wave and tidal current energy – A review of the current state of research beyond technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1070-1081.
    6. Liu, Zhen & Shi, Hongda & Cui, Ying & Kim, Kilwon, 2017. "Experimental study on overtopping performance of a circular ramp wave energy converter," Renewable Energy, Elsevier, vol. 104(C), pages 163-176.
    7. Son, Daewoong & Belissen, Valentin & Yeung, Ronald W., 2016. "Performance validation and optimization of a dual coaxial-cylinder ocean-wave energy extractor," Renewable Energy, Elsevier, vol. 92(C), pages 192-201.
    8. James Allen & Konstantinos Sampanis & Jian Wan & Deborah Greaves & Jon Miles & Gregorio Iglesias, 2016. "Laboratory Tests in the Development of WaveCat," Sustainability, MDPI, vol. 8(12), pages 1-12, December.
    9. Wu, Shuping & Liu, Chuanyu & Chen, Xinping, 2015. "Offshore wave energy resource assessment in the East China Sea," Renewable Energy, Elsevier, vol. 76(C), pages 628-636.
    10. Ning, Dezhi & Zhao, Xuanlie & Göteman, Malin & Kang, Haigui, 2016. "Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: An experimental study," Renewable Energy, Elsevier, vol. 95(C), pages 531-541.
    11. Bachynski, Erin E. & Young, Yin Lu & Yeung, Ronald W., 2012. "Analysis and optimization of a tethered wave energy converter in irregular waves," Renewable Energy, Elsevier, vol. 48(C), pages 133-145.
    12. Juan Carlos Antolín-Urbaneja & Alain Cortés & Itziar Cabanes & Patxi Estensoro & Joseba Lasa & Marga Marcos, 2015. "Modeling Innovative Power Take-Off Based on Double-Acting Hydraulic Cylinders Array for Wave Energy Conversion," Energies, MDPI, vol. 8(3), pages 1-38, March.
    13. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    14. Babarit, A. & Ben Ahmed, H. & Clément, A.H. & Debusschere, V. & Duclos, G. & Multon, B. & Robin, G., 2006. "Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave energy converters associated with a medium scale local energy storage," Renewable Energy, Elsevier, vol. 31(2), pages 153-160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuhui, Yue & Qijuan, Chen & Zenghui, Wang & Dazhou, Geng & Donglin, Yan & Wen, Jiang & Weiyu, Wang, 2019. "A novel nonlinear state space model for the hydraulic power take-off of a wave energy converter," Energy, Elsevier, vol. 180(C), pages 465-479.
    2. Rodríguez, Claudio A. & Rosa-Santos, Paulo & Taveira-Pinto, Francisco, 2019. "Assessment of damping coefficients of power take-off systems of wave energy converters: A hybrid approach," Energy, Elsevier, vol. 169(C), pages 1022-1038.
    3. Hu, Jianjian & Zhou, Binzhen & Vogel, Christopher & Liu, Pin & Willden, Richard & Sun, Ke & Zang, Jun & Geng, Jing & Jin, Peng & Cui, Lin & Jiang, Bo & Collu, Maurizio, 2020. "Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters," Applied Energy, Elsevier, vol. 269(C).
    4. Wang, Daming & Jin, Siya & Hann, Martyn & Conley, Daniel & Collins, Keri & Greaves, Deborah, 2023. "Power output estimation of a two-body hinged raft wave energy converter using HF radar measured representative sea states at Wave Hub in the UK," Renewable Energy, Elsevier, vol. 202(C), pages 103-115.
    5. Ning, De-zhi & Mu, Di & Wang, Rong-quan & Mayon, Robert, 2023. "Experimental and numerical investigations on the solitary wave actions on a land-fixed OWC wave energy converter," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    2. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    3. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Carrelhas, A.A.D. & Gato, L.M.C. & Falcão, A.F.O. & Henriques, J.C.C., 2021. "Control law design for the air-turbine-generator set of a fully submerged 1.5 MW mWave prototype. Part 2: Experimental validation," Renewable Energy, Elsevier, vol. 171(C), pages 1002-1013.
    5. Yubo Niu & Xingyuan Gu & Xuhui Yue & Yang Zheng & Peijie He & Qijuan Chen, 2022. "Research on Thermodynamic Characteristics of Hydraulic Power Take-Off System in Wave Energy Converter," Energies, MDPI, vol. 15(4), pages 1-15, February.
    6. Gao, Hong & Yu, Yang, 2018. "The dynamics and power absorption of cone-cylinder wave energy converters with three degree of freedom in irregular waves," Energy, Elsevier, vol. 143(C), pages 833-845.
    7. Xu, Sheng & Wang, Shan & Guedes Soares, C., 2019. "Review of mooring design for floating wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 595-621.
    8. Kushal A. Prasad & Aneesh A. Chand & Nallapaneni Manoj Kumar & Sumesh Narayan & Kabir A. Mamun, 2022. "A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs," Sustainability, MDPI, vol. 14(4), pages 1-55, February.
    9. Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.
    10. Zhao, Xuanlie & Zhang, Lidong & Li, Mingwei & Johanning, Lars, 2021. "Experimental investigation on the hydrodynamic performance of a multi-chamber OWC-breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Nasrollahi, Sadaf & Kazemi, Aliyeh & Jahangir, Mohammad-Hossein & Aryaee, Sara, 2023. "Selecting suitable wave energy technology for sustainable development, an MCDM approach," Renewable Energy, Elsevier, vol. 202(C), pages 756-772.
    12. Yue Hong & Mikael Eriksson & Cecilia Boström & Jianfei Pan & Yun Liu & Rafael Waters, 2020. "Damping Effect Coupled with the Internal Translator Mass of Linear Generator-Based Wave Energy Converters," Energies, MDPI, vol. 13(17), pages 1-14, August.
    13. Zhang, Yongxing & Zhao, Yongjie & Sun, Wei & Li, Jiaxuan, 2021. "Ocean wave energy converters: Technical principle, device realization, and performance evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Henriques, J.C.C. & Portillo, J.C.C. & Sheng, W. & Gato, L.M.C. & Falcão, A.F.O., 2019. "Dynamics and control of air turbines in oscillating-water-column wave energy converters: Analyses and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 571-589.
    15. Chen, Jing & Wen, Hongjie & Wang, Yongxue & Ren, Bing, 2020. "Experimental investigation of an annular sector OWC device incorporated into a dual cylindrical caisson breakwater," Energy, Elsevier, vol. 211(C).
    16. Luana Gurnari & Pasquale G. F. Filianoti & Marco Torresi & Sergio M. Camporeale, 2020. "The Wave-to-Wire Energy Conversion Process for a Fixed U-OWC Device," Energies, MDPI, vol. 13(1), pages 1-25, January.
    17. Peng, Wei & Zhang, Yingnan & Zou, Qingping & Zhang, Jisheng & Li, Haoran, 2024. "Effect of varying PTO on a triple floater wave energy converter-breakwater hybrid system: An experimental study," Renewable Energy, Elsevier, vol. 224(C).
    18. Fox, Brooklyn N. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Analysis of oscillating-water-column wave energy converter configurations for integration into caisson breakwaters," Applied Energy, Elsevier, vol. 295(C).
    19. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    20. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:165:y:2018:i:pa:p:1008-1020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.