IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1623-d755624.html
   My bibliography  Save this article

A Mathematical Model of Electrical Arc Furnaces for Analysis of Electrical Mode Parameters and Synthesis of Controlling Influences

Author

Listed:
  • Andriy Lozynskyy

    (Faculty of Transport, Electrical Engineering and Computer Science, University of Technology and Humanities in Radom, 26-600 Radom, Poland)

  • Jacek Kozyra

    (Faculty of Transport, Electrical Engineering and Computer Science, University of Technology and Humanities in Radom, 26-600 Radom, Poland)

  • Zbigniew Łukasik

    (Faculty of Transport, Electrical Engineering and Computer Science, University of Technology and Humanities in Radom, 26-600 Radom, Poland)

  • Aldona Kuśmińska-Fijałkowska

    (Faculty of Transport, Electrical Engineering and Computer Science, University of Technology and Humanities in Radom, 26-600 Radom, Poland)

  • Andriy Kutsyk

    (Institute of Power Engineering and Control System, Lviv Polytechnic National University, 79-013 Lviv, Ukraine
    Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Yaroslav Paranchuk

    (Institute of Power Engineering and Control System, Lviv Polytechnic National University, 79-013 Lviv, Ukraine)

  • Lidiia Kasha

    (Institute of Power Engineering and Control System, Lviv Polytechnic National University, 79-013 Lviv, Ukraine)

Abstract

The synthesis of a real-time model of the electric mode of an arc steelmaking furnace is shown. This model is based on the method of medium-voltage and can be used to analyze the impact of the arc steelmaking furnace on the supply network at different stages of the melting process at different control systems of the electromechanical electrode movement system, and to create model-predictive control systems of electrode movement, when control using hardware in the loop technology. To implement the chosen method, the dynamic arc resistance was used. The last was obtained on the basis of the averaged experimentally taken volt-ampere characteristics of the arc. In paper was proposed its approximation as a current function and arc length. The simulation results obtained using the created model for different operation modes of the arc steelmaking chipboard for a system with a traditional regulator of the electrode movement system are demonstrated.

Suggested Citation

  • Andriy Lozynskyy & Jacek Kozyra & Zbigniew Łukasik & Aldona Kuśmińska-Fijałkowska & Andriy Kutsyk & Yaroslav Paranchuk & Lidiia Kasha, 2022. "A Mathematical Model of Electrical Arc Furnaces for Analysis of Electrical Mode Parameters and Synthesis of Controlling Influences," Energies, MDPI, vol. 15(5), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1623-:d:755624
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1623/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1623/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omelyan Plakhtyna & Andriy Kutsyk & Mykola Semeniuk, 2020. "Real-Time Models of Electromechanical Power Systems, Based on the Method of Average Voltages in Integration Step and Their Computer Application," Energies, MDPI, vol. 13(9), pages 1-14, May.
    2. Zbigniew Łukasik & Zbigniew Olczykowski, 2020. "Estimating the Impact of Arc Furnaces on the Quality of Power in Supply Systems," Energies, MDPI, vol. 13(6), pages 1-30, March.
    3. Raul Garcia-Segura & Javier Vázquez Castillo & Fernando Martell-Chavez & Omar Longoria-Gandara & Jaime Ortegón Aguilar, 2017. "Electric Arc Furnace Modeling with Artificial Neural Networks and Arc Length with Variable Voltage Gradient," Energies, MDPI, vol. 10(9), pages 1-11, September.
    4. Zbigniew Olczykowski, 2021. "Electric Arc Furnaces as a Cause of Current and Voltage Asymmetry," Energies, MDPI, vol. 14(16), pages 1-18, August.
    5. Andriy Kutsyk & Mykola Semeniuk & Mariusz Korkosz & Grzegorz Podskarbi, 2021. "Diagnosis of the Static Excitation Systems of Synchronous Generators with the Use of Hardware-In-the-Loop Technologies," Energies, MDPI, vol. 14(21), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Kozyra & Andriy Lozynskyy & Zbigniew Łukasik & Aldona Kuśmińska-Fijałkowska & Andriy Kutsyk & Grzegorz Podskarbi & Yaroslav Paranchuk & Lidiia Kasha, 2022. "Combined Control System for the Coordinates of the Electric Mode in the Electrotechnological Complex “Arc Steel Furnace-Power-Supply Network”," Energies, MDPI, vol. 15(14), pages 1-21, July.
    2. Łukasz Mazur & Zbigniew Kłosowski, 2023. "A New Approach to the Use of Energy from Renewable Sources in Low-Voltage Power Distribution Networks," Energies, MDPI, vol. 16(2), pages 1-29, January.
    3. Zbigniew Olczykowski, 2022. "Arc Voltage Distortion as a Source of Higher Harmonics Generated by Electric Arc Furnaces," Energies, MDPI, vol. 15(10), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacek Kozyra & Andriy Lozynskyy & Zbigniew Łukasik & Aldona Kuśmińska-Fijałkowska & Andriy Kutsyk & Grzegorz Podskarbi & Yaroslav Paranchuk & Lidiia Kasha, 2022. "Combined Control System for the Coordinates of the Electric Mode in the Electrotechnological Complex “Arc Steel Furnace-Power-Supply Network”," Energies, MDPI, vol. 15(14), pages 1-21, July.
    2. Zbigniew Olczykowski, 2022. "Arc Voltage Distortion as a Source of Higher Harmonics Generated by Electric Arc Furnaces," Energies, MDPI, vol. 15(10), pages 1-23, May.
    3. Pegah Hamedani & Cristian Garcia & Jose Rodriguez, 2023. "A Comprehensive Evaluation of Different Power Quantities in DC Electric Arc Furnace Power Supplies," Energies, MDPI, vol. 16(9), pages 1-24, May.
    4. Andriy Kutsyk & Mariusz Korkosz & Mykola Semeniuk & Piotr Bogusz & Andriy Lozynskyy & Jacek Kozyra & Zbigniew Łukasik, 2022. "Electromagnetic and Electromechanical Compatibility Improvement of a Multi-Winding Switch Control-Based Induction Motor—Theoretical Description and Mathematical Modeling," Energies, MDPI, vol. 15(21), pages 1-23, October.
    5. Zbigniew Kłosowski & Maciej Fajfer & Zbigniew Ludwikowski, 2022. "Reduction of the Electromagnetic Torque Oscillation during the Direct on Line (DOL) Starting of a 6 kV Motor by Means of a Controlled Vacuum Circuit-Breaker," Energies, MDPI, vol. 15(12), pages 1-18, June.
    6. Zbigniew Łukasik & Zbigniew Olczykowski, 2020. "Estimating the Impact of Arc Furnaces on the Quality of Power in Supply Systems," Energies, MDPI, vol. 13(6), pages 1-30, March.
    7. Andriy Kutsyk & Mykola Semeniuk & Mariusz Korkosz & Grzegorz Podskarbi, 2021. "Diagnosis of the Static Excitation Systems of Synchronous Generators with the Use of Hardware-In-the-Loop Technologies," Energies, MDPI, vol. 14(21), pages 1-15, October.
    8. Andriy Kutsyk & Mariusz Korkosz & Mykola Semeniuk & Marek Nowak, 2023. "An Influence of Spatial Harmonics on an Electromagnetic Torque of a Symmetrical Six-Phase Induction Machine," Energies, MDPI, vol. 16(9), pages 1-16, April.
    9. Sławomir Cieślik, 2021. "Mathematical Modeling of the Dynamics of Linear Electrical Systems with Parallel Calculations," Energies, MDPI, vol. 14(10), pages 1-23, May.
    10. Peter Klimek & Maximilian Hess & Markus Gerschberger & Stefan Thurner, 2024. "Circular transformation of the European steel industry renders scrap metal a strategic resource," Papers 2406.12098, arXiv.org.
    11. Phuong-Ha La & Nguyen-Anh Nguyen & Sung-Jin Choi, 2024. "Average Model of Switched-Energy-Tank Battery Equalizer for Accelerated Performance Assessment," Energies, MDPI, vol. 17(3), pages 1-18, January.
    12. Manojlović, Vaso & Kamberović, Željko & Korać, Marija & Dotlić, Milan, 2022. "Machine learning analysis of electric arc furnace process for the evaluation of energy efficiency parameters," Applied Energy, Elsevier, vol. 307(C).
    13. Zbigniew Olczykowski & Zbigniew Łukasik, 2021. "Evaluation of Flicker of Light Generated by Arc Furnaces," Energies, MDPI, vol. 14(13), pages 1-23, June.
    14. Zbigniew Kłosowski & Sławomir Cieślik, 2021. "The Use of a Real-Time Simulator for Analysis of Power Grid Operation States with a Wind Turbine," Energies, MDPI, vol. 14(8), pages 1-27, April.
    15. Loredana Ghiormez & Manuela Panoiu & Caius Panoiu, 2024. "Fuzzy Logic Controller for Power Control of an Electric Arc Furnace," Mathematics, MDPI, vol. 12(21), pages 1-26, November.
    16. Haobo Xu & Zhenguo Shao & Feixiong Chen, 2019. "Data-Driven Compartmental Modeling Method for Harmonic Analysis—A Study of the Electric Arc Furnace," Energies, MDPI, vol. 12(22), pages 1-15, November.
    17. Peter Klimek & Maximilian Hess & Markus Gerschberger & Stefan Thurner, 2024. "Circular Transformation of the European Steel Industry Renders Scrap Metal a Strategic Resource," ASCII Working Papers 003, Supply Chain Intelligence Institute Austria.
    18. Zbigniew Olczykowski, 2021. "Electric Arc Furnaces as a Cause of Current and Voltage Asymmetry," Energies, MDPI, vol. 14(16), pages 1-18, August.
    19. Yaroslav Paranchuk & Daniel Jancarczyk & Pawel Falat, 2023. "Study and Analysis of Dynamics and Energy Efficiency of Arc Steelmaking Furnace Electrical Mode with a Fuzzy Control Algorithm," Energies, MDPI, vol. 16(8), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1623-:d:755624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.