IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2263-d353909.html
   My bibliography  Save this article

Real-Time Models of Electromechanical Power Systems, Based on the Method of Average Voltages in Integration Step and Their Computer Application

Author

Listed:
  • Omelyan Plakhtyna

    (Faculty of Telecommunications, Computer Science and Electrical Engineering, UTP University of Science and Technology, 85-796 Bydgoszcz, Poland
    Institute of Power Engineering and Control Systems, Lviv Polytechnic National University, 79013 Lviv, Ukraine)

  • Andriy Kutsyk

    (Faculty of Telecommunications, Computer Science and Electrical Engineering, UTP University of Science and Technology, 85-796 Bydgoszcz, Poland
    Institute of Power Engineering and Control Systems, Lviv Polytechnic National University, 79013 Lviv, Ukraine)

  • Mykola Semeniuk

    (Institute of Power Engineering and Control Systems, Lviv Polytechnic National University, 79013 Lviv, Ukraine)

Abstract

In this work, the real-time mathematical models of electromechanical power systems with semiconductor converters based on the author’s method of the average voltages in the integration step are described. As well as the theoretical basics of the method, the algebraization algorithm of differential equations on a time quantum is described. This time quantum in the hybrid model is synchronized with the time quanta of signal samples of the physical part of the model. In the hybrid model, only algebraic equations of electromechanical power systems are present. Software and technical applications of the hybrid models of energy-generating blocks for selected thermal and nuclear power plants are described. In the process curve courses obtained and projected in this paper, the author’s hybrid models are illustrated. In the existing models, the nonlinearity of the electric machines and the semiconductor converters are taken into account. The numerical stability of the method of average voltages in integration step—in the sense of the resistance to computer calculation disturbances—is proven.

Suggested Citation

  • Omelyan Plakhtyna & Andriy Kutsyk & Mykola Semeniuk, 2020. "Real-Time Models of Electromechanical Power Systems, Based on the Method of Average Voltages in Integration Step and Their Computer Application," Energies, MDPI, vol. 13(9), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2263-:d:353909
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2263/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2263/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phuong-Ha La & Nguyen-Anh Nguyen & Sung-Jin Choi, 2024. "Average Model of Switched-Energy-Tank Battery Equalizer for Accelerated Performance Assessment," Energies, MDPI, vol. 17(3), pages 1-18, January.
    2. Zbigniew Kłosowski & Maciej Fajfer & Zbigniew Ludwikowski, 2022. "Reduction of the Electromagnetic Torque Oscillation during the Direct on Line (DOL) Starting of a 6 kV Motor by Means of a Controlled Vacuum Circuit-Breaker," Energies, MDPI, vol. 15(12), pages 1-18, June.
    3. Andriy Kutsyk & Mariusz Korkosz & Mykola Semeniuk & Piotr Bogusz & Andriy Lozynskyy & Jacek Kozyra & Zbigniew Łukasik, 2022. "Electromagnetic and Electromechanical Compatibility Improvement of a Multi-Winding Switch Control-Based Induction Motor—Theoretical Description and Mathematical Modeling," Energies, MDPI, vol. 15(21), pages 1-23, October.
    4. Andriy Lozynskyy & Jacek Kozyra & Zbigniew Łukasik & Aldona Kuśmińska-Fijałkowska & Andriy Kutsyk & Yaroslav Paranchuk & Lidiia Kasha, 2022. "A Mathematical Model of Electrical Arc Furnaces for Analysis of Electrical Mode Parameters and Synthesis of Controlling Influences," Energies, MDPI, vol. 15(5), pages 1-19, February.
    5. Jacek Kozyra & Andriy Lozynskyy & Zbigniew Łukasik & Aldona Kuśmińska-Fijałkowska & Andriy Kutsyk & Grzegorz Podskarbi & Yaroslav Paranchuk & Lidiia Kasha, 2022. "Combined Control System for the Coordinates of the Electric Mode in the Electrotechnological Complex “Arc Steel Furnace-Power-Supply Network”," Energies, MDPI, vol. 15(14), pages 1-21, July.
    6. Andriy Kutsyk & Mykola Semeniuk & Mariusz Korkosz & Grzegorz Podskarbi, 2021. "Diagnosis of the Static Excitation Systems of Synchronous Generators with the Use of Hardware-In-the-Loop Technologies," Energies, MDPI, vol. 14(21), pages 1-15, October.
    7. Zbigniew Kłosowski & Sławomir Cieślik, 2021. "The Use of a Real-Time Simulator for Analysis of Power Grid Operation States with a Wind Turbine," Energies, MDPI, vol. 14(8), pages 1-27, April.
    8. Sławomir Cieślik, 2021. "Mathematical Modeling of the Dynamics of Linear Electrical Systems with Parallel Calculations," Energies, MDPI, vol. 14(10), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2263-:d:353909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.