IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p727-d1028726.html
   My bibliography  Save this article

A New Approach to the Use of Energy from Renewable Sources in Low-Voltage Power Distribution Networks

Author

Listed:
  • Łukasz Mazur

    (Institute of Electrical Engineering, Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland)

  • Zbigniew Kłosowski

    (Institute of Electrical Engineering, Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland)

Abstract

Currently, in rural networks with a large amount of distributed generation, PV installations are often disconnected due to the excessively high voltage in the network, which often exceeds the limit value, in accordance with the PN-EN 50160 standard. Disconnecting such an installation extends the return on investment costs by preventing the generation of electricity for the owner’s needs and results in the consumption of this energy from the grid. In such a case, the recipient has to bear the costs related to the purchase of this energy. In order to solve the problem of excessively high voltage in a low-voltage distribution network with a large amount of distributed generation, the authors of this article proposed a new approach to the use of electricity from these sources. In order to present the benefits of the proposed solution, a computer simulation was used. In order to carry it out, a mathematical model of a low-voltage power grid with distributed generation was developed using the electric multipole method and Newton’s method, which is discussed in the paper. To determine the advantages of the proposed solution, nine variants of the operation of an exemplary low-voltage power grid over one day were analyzed. The main conclusion based on the analysis of the results is that the proposed approach improves the operation of the power system by maintaining the voltage values within the standard range for the entire tested part of the network. In addition, the proposed approach does not increase the power or electricity when generating electricity from a PV installation. The proposed solution can also serve as a very attractive stimulus for the creation of energy cooperatives.

Suggested Citation

  • Łukasz Mazur & Zbigniew Kłosowski, 2023. "A New Approach to the Use of Energy from Renewable Sources in Low-Voltage Power Distribution Networks," Energies, MDPI, vol. 16(2), pages 1-29, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:727-:d:1028726
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/727/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/727/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Małkowski & Michał Izdebski & Piotr Miller, 2020. "Adaptive Algorithm of a Tap-Changer Controller of the Power Transformer Supplying the Radial Network Reducing the Risk of Voltage Collapse," Energies, MDPI, vol. 13(20), pages 1-25, October.
    2. Protopapadaki, Christina & Saelens, Dirk, 2017. "Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties," Applied Energy, Elsevier, vol. 192(C), pages 268-281.
    3. Yesbol Gabdullin & Brian Azzopardi, 2022. "Impacts of Photovoltaics in Low-Voltage Distribution Networks: A Case Study in Malta," Energies, MDPI, vol. 15(18), pages 1-14, September.
    4. Andriy Lozynskyy & Jacek Kozyra & Zbigniew Łukasik & Aldona Kuśmińska-Fijałkowska & Andriy Kutsyk & Yaroslav Paranchuk & Lidiia Kasha, 2022. "A Mathematical Model of Electrical Arc Furnaces for Analysis of Electrical Mode Parameters and Synthesis of Controlling Influences," Energies, MDPI, vol. 15(5), pages 1-19, February.
    5. Zbigniew Kłosowski & Maciej Fajfer & Zbigniew Ludwikowski, 2022. "Reduction of the Electromagnetic Torque Oscillation during the Direct on Line (DOL) Starting of a 6 kV Motor by Means of a Controlled Vacuum Circuit-Breaker," Energies, MDPI, vol. 15(12), pages 1-18, June.
    6. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    7. Gregorio Fernández & Noemi Galan & Daniel Marquina & Diego Martínez & Alberto Sanchez & Pablo López & Hans Bludszuweit & Jorge Rueda, 2020. "Photovoltaic Generation Impact Analysis in Low Voltage Distribution Grids," Energies, MDPI, vol. 13(17), pages 1-27, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zbigniew Kłosowski & Łukasz Mazur, 2023. "Influence of the Type of Receiver on Electrical Energy Losses in Power Grids," Energies, MDPI, vol. 16(15), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł Pijarski & Piotr Kacejko & Piotr Miller, 2023. "Advanced Optimisation and Forecasting Methods in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 16(6), pages 1-20, March.
    2. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    3. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
    4. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    5. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    6. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    7. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    8. Guo, Rui & Shamsi, Mohammad Haris & Sharifi, Mohsen & Saelens, Dirk, 2025. "Exploring uncertainty in district heat demand through a probabilistic building characterization approach," Applied Energy, Elsevier, vol. 377(PA).
    9. Tarroja, Brian & Chiang, Felicia & AghaKouchak, Amir & Samuelsen, Scott & Raghavan, Shuba V. & Wei, Max & Sun, Kaiyu & Hong, Tianzhen, 2018. "Translating climate change and heating system electrification impacts on building energy use to future greenhouse gas emissions and electric grid capacity requirements in California," Applied Energy, Elsevier, vol. 225(C), pages 522-534.
    10. Semmelmann, Leo & Hertel, Matthias & Kircher, Kevin J. & Mikut, Ralf & Hagenmeyer, Veit & Weinhardt, Christof, 2024. "The impact of heat pumps on day-ahead energy community load forecasting," Applied Energy, Elsevier, vol. 368(C).
    11. Zbigniew Olczykowski, 2022. "Arc Voltage Distortion as a Source of Higher Harmonics Generated by Electric Arc Furnaces," Energies, MDPI, vol. 15(10), pages 1-23, May.
    12. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    14. Christian van Someren & Martien Visser & Han Slootweg, 2023. "Sizing Batteries for Power Flow Management in Distribution Grids: A Method to Compare Battery Capacities for Different Siting Configurations and Variable Power Flow Simultaneity," Energies, MDPI, vol. 16(22), pages 1-19, November.
    15. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    16. Ferréol Binot & Trung Dung Le & Marc Petit, 2021. "Characterization and Modeling of LV Cables Considering External Parameters for Distribution Networks," Energies, MDPI, vol. 14(23), pages 1-29, November.
    17. Jacek Kozyra & Andriy Lozynskyy & Zbigniew Łukasik & Aldona Kuśmińska-Fijałkowska & Andriy Kutsyk & Grzegorz Podskarbi & Yaroslav Paranchuk & Lidiia Kasha, 2022. "Combined Control System for the Coordinates of the Electric Mode in the Electrotechnological Complex “Arc Steel Furnace-Power-Supply Network”," Energies, MDPI, vol. 15(14), pages 1-21, July.
    18. Yao, Shuai & Wu, Jianzhong & Qadrdan, Meysam, 2024. "A state-of-the-art analysis and perspectives on the 4th/5th generation district heating and cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    19. Edmunds, Calum & Galloway, Stuart & Dixon, James & Bukhsh, Waqquas & Elders, Ian, 2021. "Hosting capacity assessment of heat pumps and optimised electric vehicle charging on low voltage networks," Applied Energy, Elsevier, vol. 298(C).
    20. Bernd Thormann & Thomas Kienberger, 2022. "Estimation of Grid Reinforcement Costs Triggered by Future Grid Customers: Influence of the Quantification Method (Scaling vs. Large-Scale Simulation) and Coincidence Factors (Single vs. Multiple Appl," Energies, MDPI, vol. 15(4), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:727-:d:1028726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.