IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i21p3445-d1513751.html
   My bibliography  Save this article

Fuzzy Logic Controller for Power Control of an Electric Arc Furnace

Author

Listed:
  • Loredana Ghiormez

    (Department of Electrical Engineering and Industrial Informatics, University Politechnica Timisoara, 300006 Timisoara, Romania)

  • Manuela Panoiu

    (Department of Electrical Engineering and Industrial Informatics, University Politechnica Timisoara, 300006 Timisoara, Romania)

  • Caius Panoiu

    (Department of Electrical Engineering and Industrial Informatics, University Politechnica Timisoara, 300006 Timisoara, Romania)

Abstract

Electric Arc Furnaces (EAFs) are widely used in the steel manufacturing industry to melt scrap steel by employing a large number of electric arcs. EAFs play an important role in ensuring the efficient production of steel. However, their nonlinear and variable load characteristics have a significant impact on power quality. Because the active power of an electric arc depends on its length, a system for controlling the electrode positions is necessary. This paper presents a control system based on a fuzzy logic controller for the active power control of an electric arc furnace. Individual simulation scenarios were chosen with both reference values and the process taken into consideration. The reference, constant value, step variation, and the sequence of step variation were investigated, as well as step disturbances and the sequence of step disturbances from the viewpoint of the process. Furthermore, the procedure of changing the tap on a transformer was investigated. The proposed solution minimizes the time required for charge elaboration, but the main benefit is that there are no additional costs in the implementation process because the installation remains identical, with the only changes being improvements to soft control management.

Suggested Citation

  • Loredana Ghiormez & Manuela Panoiu & Caius Panoiu, 2024. "Fuzzy Logic Controller for Power Control of an Electric Arc Furnace," Mathematics, MDPI, vol. 12(21), pages 1-26, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:21:p:3445-:d:1513751
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/21/3445/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/21/3445/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wanjun Lei & Yanxia Wang & Lu Wang & Hui Cao, 2015. "A Fundamental Wave Amplitude Prediction Algorithm Based on Fuzzy Neural Network for Harmonic Elimination of Electric Arc Furnace Current," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-6, October.
    2. Guo Xinming & Huo Qunhai & Wei Tongzhen & Yin Jingyuan, 2020. "A Local Control Strategy for Distributed Energy Fluctuation Suppression Based on Soft Open Point," Energies, MDPI, vol. 13(6), pages 1-15, March.
    3. Manuela Panoiu & Caius Panoiu, 2024. "Hybrid Deep Neural Network Approaches for Power Quality Analysis in Electric Arc Furnaces," Mathematics, MDPI, vol. 12(19), pages 1-30, September.
    4. Zbigniew Łukasik & Zbigniew Olczykowski, 2020. "Estimating the Impact of Arc Furnaces on the Quality of Power in Supply Systems," Energies, MDPI, vol. 13(6), pages 1-30, March.
    5. Andrej Orgulan & Primož Sukič & Janez Ribič, 2019. "A Procedure for Mitigating the Light Flicker in Office LED Lighting Caused by Voltage Fluctuations," Energies, MDPI, vol. 12(20), pages 1-15, October.
    6. Bhonsle, Deepak C. & Kelkar, Ramesh B., 2016. "Analyzing power quality issues in electric arc furnace by modeling," Energy, Elsevier, vol. 115(P1), pages 830-839.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zbigniew Olczykowski & Zbigniew Łukasik, 2021. "Evaluation of Flicker of Light Generated by Arc Furnaces," Energies, MDPI, vol. 14(13), pages 1-23, June.
    2. Zbigniew Olczykowski, 2022. "Arc Voltage Distortion as a Source of Higher Harmonics Generated by Electric Arc Furnaces," Energies, MDPI, vol. 15(10), pages 1-23, May.
    3. Zbigniew Łukasik & Zbigniew Olczykowski, 2020. "Estimating the Impact of Arc Furnaces on the Quality of Power in Supply Systems," Energies, MDPI, vol. 13(6), pages 1-30, March.
    4. Peter Klimek & Maximilian Hess & Markus Gerschberger & Stefan Thurner, 2024. "Circular transformation of the European steel industry renders scrap metal a strategic resource," Papers 2406.12098, arXiv.org.
    5. Manojlović, Vaso & Kamberović, Željko & Korać, Marija & Dotlić, Milan, 2022. "Machine learning analysis of electric arc furnace process for the evaluation of energy efficiency parameters," Applied Energy, Elsevier, vol. 307(C).
    6. Yuriy Bilan & Marcin Rabe & Katarzyna Widera, 2022. "Distributed Energy Resources: Operational Benefits," Energies, MDPI, vol. 15(23), pages 1-7, November.
    7. Jacek Kozyra & Andriy Lozynskyy & Zbigniew Łukasik & Aldona Kuśmińska-Fijałkowska & Andriy Kutsyk & Grzegorz Podskarbi & Yaroslav Paranchuk & Lidiia Kasha, 2022. "Combined Control System for the Coordinates of the Electric Mode in the Electrotechnological Complex “Arc Steel Furnace-Power-Supply Network”," Energies, MDPI, vol. 15(14), pages 1-21, July.
    8. Seme, Sebastijan & Lukač, Niko & Štumberger, Bojan & Hadžiselimović, Miralem, 2017. "Power quality experimental analysis of grid-connected photovoltaic systems in urban distribution networks," Energy, Elsevier, vol. 139(C), pages 1261-1266.
    9. Zbigniew Olczykowski, 2022. "Arc Furnace Power-Susceptibility Coefficients," Energies, MDPI, vol. 15(15), pages 1-21, July.
    10. Pegah Hamedani & Cristian Garcia & Jose Rodriguez, 2023. "A Comprehensive Evaluation of Different Power Quantities in DC Electric Arc Furnace Power Supplies," Energies, MDPI, vol. 16(9), pages 1-24, May.
    11. Haobo Xu & Zhenguo Shao & Feixiong Chen, 2019. "Data-Driven Compartmental Modeling Method for Harmonic Analysis—A Study of the Electric Arc Furnace," Energies, MDPI, vol. 12(22), pages 1-15, November.
    12. Peter Klimek & Maximilian Hess & Markus Gerschberger & Stefan Thurner, 2024. "Circular Transformation of the European Steel Industry Renders Scrap Metal a Strategic Resource," ASCII Working Papers 003, Supply Chain Intelligence Institute Austria.
    13. Javier Solano & Diego Jimenez & Adrian Ilinca, 2020. "A Modular Simulation Testbed for Energy Management in AC/DC Microgrids," Energies, MDPI, vol. 13(16), pages 1-23, August.
    14. Zbigniew Olczykowski, 2021. "Electric Arc Furnaces as a Cause of Current and Voltage Asymmetry," Energies, MDPI, vol. 14(16), pages 1-18, August.
    15. Andriy Lozynskyy & Jacek Kozyra & Zbigniew Łukasik & Aldona Kuśmińska-Fijałkowska & Andriy Kutsyk & Yaroslav Paranchuk & Lidiia Kasha, 2022. "A Mathematical Model of Electrical Arc Furnaces for Analysis of Electrical Mode Parameters and Synthesis of Controlling Influences," Energies, MDPI, vol. 15(5), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:21:p:3445-:d:1513751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.