IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1528-d753226.html
   My bibliography  Save this article

Pressure Drop and Energy Recovery with a New Centrifugal Micro-Turbine: Fundamentals and Application in a Real WDN

Author

Listed:
  • Maria Cristina Morani

    (Department of Hydraulic, Geotechnical and Environmental Engineering, Università di Napoli Federico II, Via Claudio, 21, 80125 Napoli, Italy)

  • Mariana Simão

    (Civil Engineering Research and Innovation for Sustainability (CERIS), Instituto Superior Técnico, Department of Civil Engineering, Architecture and Georesources, University of Lisbon, 1049-001 Lisbon, Portugal)

  • Ignac Gazur

    (IG Energy Ignác Gazur, Unipessoal, Lda, Rua Ferreira de Castro, Lote 46, Rio de Loba, 3505-570 Viseu, Portugal)

  • Rui S. Santos

    (RSS Engenharia, Lda, Centro de Escritórios das Laranjeiras, Prç. Nuno Rodrigues dos Santos, 7, 1600-171 Lisboa, Portugal)

  • Armando Carravetta

    (Department of Hydraulic, Geotechnical and Environmental Engineering, Università di Napoli Federico II, Via Claudio, 21, 80125 Napoli, Italy)

  • Oreste Fecarotta

    (Department of Hydraulic, Geotechnical and Environmental Engineering, Università di Napoli Federico II, Via Claudio, 21, 80125 Napoli, Italy)

  • Helena M. Ramos

    (Civil Engineering Research and Innovation for Sustainability (CERIS), Instituto Superior Técnico, Department of Civil Engineering, Architecture and Georesources, University of Lisbon, 1049-001 Lisbon, Portugal)

Abstract

Water distribution networks need to improve system efficiency. Hydropower is a clean and renewable energy that has been among the key solutions to environmental issues for many decades. As the turbine is the core of hydropower plants, high attention is paid to creating new design solutions and increasing the performance of turbines in order to enhance energy efficiency of leakage by pressure control. Hence, design and performance analysis of a new turbine is a crucial aspect for addressing the efficiency of its application. In this study, computational fluid dynamics (CFD) modeling is coupled with experimental tests in order to investigate the optimal performance of a new centrifugal turbine. The behavior of the flow through the turbine runner is assessed by means of velocity profiles and pressure contours at all components of the machine under different operating conditions. Finally, the turbine geometry is scaled to a real water distribution network and an optimization procedure is performed with the aim of investigating the optimal location of both the designed new centrifugal micro-turbines (CMT) and pressure reducing valves (PRV) in order to control the excess of pressure and produce energy at the same time.

Suggested Citation

  • Maria Cristina Morani & Mariana Simão & Ignac Gazur & Rui S. Santos & Armando Carravetta & Oreste Fecarotta & Helena M. Ramos, 2022. "Pressure Drop and Energy Recovery with a New Centrifugal Micro-Turbine: Fundamentals and Application in a Real WDN," Energies, MDPI, vol. 15(4), pages 1-25, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1528-:d:753226
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1528/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1528/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Scarlett, Gabriel & Viola, Ignazio Maria, 2020. "Unsteady hydrodynamics of tidal turbine blades," Renewable Energy, Elsevier, vol. 146(C), pages 843-855.
    2. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2018. "Flow measurements around guide vanes of Francis turbine: A PIV approach," Renewable Energy, Elsevier, vol. 126(C), pages 177-188.
    3. Oreste Fecarotta & Aonghus McNabola, 2017. "Optimal Location of Pump as Turbines (PATs) in Water Distribution Networks to Recover Energy and Reduce Leakage," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 5043-5059, December.
    4. Ogayar, B. & Vidal, P.G., 2009. "Cost determination of the electro-mechanical equipment of a small hydro-power plant," Renewable Energy, Elsevier, vol. 34(1), pages 6-13.
    5. L. Araujo & H. Ramos & S. Coelho, 2006. "Pressure Control for Leakage Minimisation in Water Distribution Systems Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(1), pages 133-149, February.
    6. Armando Carravetta & Giuseppe Del Giudice & Oreste Fecarotta & Helena M. Ramos, 2013. "PAT Design Strategy for Energy Recovery in Water Distribution Networks by Electrical Regulation," Energies, MDPI, vol. 6(1), pages 1-14, January.
    7. Zhe Ma & Baoshan Zhu & Cong Rao & Yonghong Shangguan, 2019. "Comprehensive Hydraulic Improvement and Parametric Analysis of a Francis Turbine Runner," Energies, MDPI, vol. 12(2), pages 1-20, January.
    8. Goyal, Rahul & Gandhi, Bhupendra K., 2018. "Review of hydrodynamics instabilities in Francis turbine during off-design and transient operations," Renewable Energy, Elsevier, vol. 116(PA), pages 697-709.
    9. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape of thick blades for a hydraulic Savonius turbine," Renewable Energy, Elsevier, vol. 134(C), pages 629-638.
    10. Chen, Jinbo & Engeda, Abraham, 2020. "Standard module hydraulic technology: A novel geometrical design methodology and analysis for a low-head hydraulic turbine system, Part I: General design methodology and basic geometry considerations," Energy, Elsevier, vol. 196(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Pirard & Vasileios Kitsikoudis & Sebastien Erpicum & Michel Pirotton & Pierre Archambeau & Benjamin Dewals, 2022. "Discharge Redistribution as a Key Process for Heuristic Optimization of Energy Production with Pumps as Turbines in a Water Distribution Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1237-1250, March.
    2. Sinagra, Marco & Aricò, Costanza & Tucciarelli, Tullio & Morreale, Gabriele, 2020. "Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production," Renewable Energy, Elsevier, vol. 149(C), pages 980-986.
    3. Irene Samora & Mário Franca & Anton Schleiss & Helena Ramos, 2016. "Simulated Annealing in Optimization of Energy Production in a Water Supply Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1533-1547, March.
    4. Mauro De Marchis & Barbara Milici & Roberto Volpe & Antonio Messineo, 2016. "Energy Saving in Water Distribution Network through Pump as Turbine Generators: Economic and Environmental Analysis," Energies, MDPI, vol. 9(11), pages 1-15, October.
    5. Davi Edson Sales Souza & André Luiz Amarante Mesquita & Claudio José Cavalcante Blanco, 2023. "Pressure Regulation in a Water Distribution Network Using Pumps as Turbines at Variable Speed for Energy Recovery," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1183-1206, February.
    6. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Vincenzo Sammartano & Lorena Liuzzo & Gabriele Freni, 2019. "Identification of Potential Locations for Run-of-River Hydropower Plants Using a GIS-Based Procedure," Energies, MDPI, vol. 12(18), pages 1-20, September.
    8. Irene Samora & Mário J. Franca & Anton J. Schleiss & Helena M. Ramos, 2016. "Simulated Annealing in Optimization of Energy Production in a Water Supply Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1533-1547, March.
    9. Pérez-Sánchez, Modesto & Sánchez-Romero, Francisco Javier & López-Jiménez, P. Amparo & Ramos, Helena M., 2018. "PATs selection towards sustainability in irrigation networks: Simulated annealing as a water management tool," Renewable Energy, Elsevier, vol. 116(PA), pages 234-249.
    10. Carravetta, A. & Fecarotta, O. & Ramos, H.M., 2018. "A new low-cost installation scheme of PATs for pico-hydropower to recover energy in residential areas," Renewable Energy, Elsevier, vol. 125(C), pages 1003-1014.
    11. Mauro Venturini & Stefano Alvisi & Silvio Simani & Lucrezia Manservigi, 2017. "Energy Production by Means of Pumps As Turbines in Water Distribution Networks," Energies, MDPI, vol. 10(10), pages 1-13, October.
    12. Adnan Aslam Noon & Man-Hoe Kim, 2021. "Sediment and Cavitation Erosion in Francis Turbines—Review of Latest Experimental and Numerical Techniques," Energies, MDPI, vol. 14(6), pages 1-19, March.
    13. Shamsuddeen, Mohamed Murshid & Ma, Sang-Bum & Park, No-Hyun & Kim, Kyung Min & Kim, Jin-Hyuk, 2023. "Design analysis and optimization of a hydraulic gate turbine for power production from ultra-low head sites," Energy, Elsevier, vol. 275(C).
    14. Le Marre, Maël & Mandin, Philippe & Lanoisellé, Jean-Louis & Zilliox, Erik & Rammal, Farah & Kim, Myeongsub (Mike) & Inguanta, Rosalinda, 2022. "Pumps as turbines regulation study through a decision-support algorithm," Renewable Energy, Elsevier, vol. 194(C), pages 561-570.
    15. Wei Yang & Benqing Liu & Ruofu Xiao, 2019. "Three-Dimensional Inverse Design Method for Hydraulic Machinery," Energies, MDPI, vol. 12(17), pages 1-19, August.
    16. Andrés Ortega-Ballesteros & Francisco Iturriaga-Bustos & Alberto-Jesus Perea-Moreno & David Muñoz-Rodríguez, 2022. "Advanced Pressure Management for Sustainable Leakage Reduction and Service Optimization: A Case Study in Central Chile," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    17. Zhu, Chengyong & Qiu, Yingning & Wang, Tongguang, 2021. "Dynamic stall of the wind turbine airfoil and blade undergoing pitch oscillations: A comparative study," Energy, Elsevier, vol. 222(C).
    18. Yi, Choong-Sung & Lee, Jin-Hee & Shim, Myung-Pil, 2010. "Site location analysis for small hydropower using geo-spatial information system," Renewable Energy, Elsevier, vol. 35(4), pages 852-861.
    19. Xu, Lianchen & Kan, Kan & Zheng, Yuan & Liu, Demin & Binama, Maxime & Xu, Zhe & Yan, Xiaotong & Guo, Mengqi & Chen, Huixiang, 2024. "Rotating stall mechanism of pump-turbine in hump region: An insight into vortex evolution," Energy, Elsevier, vol. 292(C).
    20. Marco van Dijk & Stefanus Johannes van Vuuren & Giovanna Cavazzini & Chantel Monica Niebuhr & Alberto Santolin, 2022. "Optimizing Conduit Hydropower Potential by Determining Pareto-Optimal Trade-Off Curve," Sustainability, MDPI, vol. 14(13), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1528-:d:753226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.