IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124015283.html
   My bibliography  Save this article

Techno-economic design and placement tool for energy recovering pressure regulating turbines in water distribution systems

Author

Listed:
  • Bideris-Davos, Admitos A.
  • Vovos, Panagis N.

Abstract

Water distribution systems present poor energy efficiency due to the significant amount of energy that dissipates in the form of excess water pressure. Besides energy losses, excess pressure increases water losses due to leakages and may result in pipeline damage. The employment of micro-turbines that concurrently harness excess energy and achieve pressure management is proposed by many researchers as potential replacements to the currently used pressure reduction valves. This work relies on previous work that determines the optimal design and operating point of such turbines integrated in the power distribution system, in order to develop an algorithm that considers the economic viability of such projects. The suggested algorithm has been applied to a simulated large-scale WDS in Kentucky that contains several locations where pressure regulation is currently performed or planned due to immense local pressure. Involving the economic viability of pressure regulating turbines within the design optimization process improves pay-back period and levelized cost of energy by more than 10 % and 20 %, respectively, compared to when their design is optimized solely for pressure regulation and maximum energy yield. The application of this approach to a typical WDS allowed more than 161 MWh/year of clean energy to be produced.

Suggested Citation

  • Bideris-Davos, Admitos A. & Vovos, Panagis N., 2024. "Techno-economic design and placement tool for energy recovering pressure regulating turbines in water distribution systems," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124015283
    DOI: 10.1016/j.renene.2024.121460
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124015283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamlehdar, Maryam & Yousefi, Hossein & Noorollahi, Younes & Mohammadi, Mohammad, 2022. "Energy recovery from water distribution networks using micro hydropower: A case study in Iran," Energy, Elsevier, vol. 252(C).
    2. Itani, Youssef & Soliman, Mohamed Reda & Kahil, Maher, 2020. "Recovering energy by hydro-turbines application in water transmission pipelines: A case study west of Saudi Arabia," Energy, Elsevier, vol. 211(C).
    3. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    4. Oreste Fecarotta & Aonghus McNabola, 2017. "Optimal Location of Pump as Turbines (PATs) in Water Distribution Networks to Recover Energy and Reduce Leakage," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 5043-5059, December.
    5. Ogayar, B. & Vidal, P.G., 2009. "Cost determination of the electro-mechanical equipment of a small hydro-power plant," Renewable Energy, Elsevier, vol. 34(1), pages 6-13.
    6. Kaldellis, J.K., 2007. "The contribution of small hydro power stations to the electricity generation in Greece: Technical and economic considerations," Energy Policy, Elsevier, vol. 35(4), pages 2187-2196, April.
    7. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Shabara, H.M., 2015. "Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 40-50.
    8. Cavazzini, Giovanna & Santolin, Alberto & Pavesi, Giorgio & Ardizzon, Guido, 2016. "Accurate estimation model for small and micro hydropower plants costs in hybrid energy systems modelling," Energy, Elsevier, vol. 103(C), pages 746-757.
    9. Lima, Gustavo Meirelles & Luvizotto, Edevar & Brentan, Bruno M., 2017. "Selection and location of Pumps as Turbines substituting pressure reducing valves," Renewable Energy, Elsevier, vol. 109(C), pages 392-405.
    10. Aggidis, G.A. & Luchinskaya, E. & Rothschild, R. & Howard, D.C., 2010. "The costs of small-scale hydro power production: Impact on the development of existing potential," Renewable Energy, Elsevier, vol. 35(12), pages 2632-2638.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teegala Srinivasa Kishore & Epari Ritesh Patro & V. S. K. V. Harish & Ali Torabi Haghighi, 2021. "A Comprehensive Study on the Recent Progress and Trends in Development of Small Hydropower Projects," Energies, MDPI, vol. 14(10), pages 1-31, May.
    2. Marco van Dijk & Stefanus Johannes van Vuuren & Giovanna Cavazzini & Chantel Monica Niebuhr & Alberto Santolin, 2022. "Optimizing Conduit Hydropower Potential by Determining Pareto-Optimal Trade-Off Curve," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    3. Meita Rumbayan & Rilya Rumbayan, 2023. "Feasibility Study of a Micro Hydro Power Plant for Rural Electrification in Lalumpe Village, North Sulawesi, Indonesia," Sustainability, MDPI, vol. 15(19), pages 1-13, September.
    4. Hamlehdar, Maryam & Yousefi, Hossein & Noorollahi, Younes & Mohammadi, Mohammad, 2022. "Energy recovery from water distribution networks using micro hydropower: A case study in Iran," Energy, Elsevier, vol. 252(C).
    5. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    6. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    7. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Pudukudy, Manoj & Hasan, Hassimi Abu & Mohamed, Azah & Hamid, Aidil Abdul, 2018. "Pico hydropower (PHP) development in Malaysia: Potential, present status, barriers and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2796-2805.
    8. Thomas Pirard & Vasileios Kitsikoudis & Sebastien Erpicum & Michel Pirotton & Pierre Archambeau & Benjamin Dewals, 2022. "Discharge Redistribution as a Key Process for Heuristic Optimization of Energy Production with Pumps as Turbines in a Water Distribution Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1237-1250, March.
    9. Elgammi, Moutaz & Hamad, Abduljawad Ashour, 2022. "A feasibility study of operating a low static pressure head micro pelton turbine based on water hammer phenomenon," Renewable Energy, Elsevier, vol. 195(C), pages 1-16.
    10. Alejandro Tapia Córdoba & Daniel Gutiérrez Reina & Pablo Millán Gata, 2019. "An Evolutionary Computational Approach for Designing Micro Hydro Power Plants," Energies, MDPI, vol. 12(5), pages 1-25, March.
    11. Manoujan, Amin Zarei & Riasi, Alireza, 2024. "Optimal selection of parallel pumps running as turbines for energy harvesting in water transmission lines considering economic parameters," Applied Energy, Elsevier, vol. 359(C).
    12. Manzano-Agugliaro, Francisco & Taher, Myriam & Zapata-Sierra, Antonio & Juaidi, Adel & Montoya, Francisco G., 2017. "An overview of research and energy evolution for small hydropower in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 476-489.
    13. Moghaddam, Ali & Kutschelis, Boris & Holz, Frank & Skoda, Romuald, 2024. "Experiments and three-dimensional flow simulations on twin-screw pumps operated as control valves for energy recovery," Energy, Elsevier, vol. 306(C).
    14. Mishra, Sachin & Singal, S.K. & Khatod, D.K., 2011. "Optimal installation of small hydropower plant—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3862-3869.
    15. Verma, Aman & Raj, Ratan & Kumar, Mayank & Ghandehariun, Samane & Kumar, Amit, 2015. "Assessment of renewable energy technologies for charging electric vehicles in Canada," Energy, Elsevier, vol. 86(C), pages 548-559.
    16. Kostner, Michael K. & Zanfei, Ariele & Alberizzi, Jacopo C. & Renzi, Massimiliano & Righetti, Maurizio & Menapace, Andrea, 2023. "Micro hydro power generation in water distribution networks through the optimal pumps-as-turbines sizing and control," Applied Energy, Elsevier, vol. 351(C).
    17. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Shabara, H.M., 2015. "Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 40-50.
    18. Boroomandnia, Arezoo & Rismanchi, Behzad & Wu, Wenyan, 2022. "A review of micro hydro systems in urban areas: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    19. Desire Wade Atchike & Zhen-Yu Zhao & Geriletu Bao, 2020. "Bootstrapping the Cost Modelling of Hydropower Projects in Sub-Saharan Africa: Case of Chinese Financed Projects," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 136-146.
    20. Bilgili, Mehmet & Bilirgen, Harun & Ozbek, Arif & Ekinci, Firat & Demirdelen, Tugce, 2018. "The role of hydropower installations for sustainable energy development in Turkey and the world," Renewable Energy, Elsevier, vol. 126(C), pages 755-764.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124015283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.