IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1424-d750273.html
   My bibliography  Save this article

Impact on the Power Grid Caused via Ultra-Fast Charging Technologies of the Electric Buses Fleet

Author

Listed:
  • Mohammed Al-Saadi

    (MOBI Research Group, Vrij Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
    Flanders Make, 3001 Heverlee, Belgium
    The technical manager of the ASSURED project.)

  • Sharmistha Bhattacharyya

    (Enexis Netbeheer BV, 1077 XX Tilburg, The Netherlands)

  • Pierre Van Tichelen

    (Belgisch Laboratorium, Van De Elektriciteitsindustrie Laborelec CVBA, 1630 Linkebeek, Belgium)

  • Manuel Mathes

    (Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF, Bartningstraße 47, 64289 Darmstadt, Germany)

  • Johannes Käsgen

    (Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF, Bartningstraße 47, 64289 Darmstadt, Germany)

  • Joeri Van Mierlo

    (MOBI Research Group, Vrij Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
    Flanders Make, 3001 Heverlee, Belgium)

  • Maitane Berecibar

    (MOBI Research Group, Vrij Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium)

Abstract

Battery Electric Buses (BEBs) are considerably integrated into cities worldwide. These buses have a strict schedule; thus, they could be charged in a very short time with a power level up to 600 kW. The high-power systems and short charging times imply special grid operation conditions that should be taken into account. Therefore, it is necessary to consider the influence of their charging infrastructure on the distribution system operation, especially near the charging point. This work presents two Use Cases (UCs) from two demos (Germany and the Netherlands) to investigate the impact of the slow and fast-chargers’ integrations on the power grid and environment. Fast-chargers up to 350 kW based on pantograph technology and slow-chargers up to 50 kW based on Combined Charging System Type 2 (CCS2) are used on the BEB line route and in the depot, respectively. The charging of BEBs with these solutions is studied here to investigate their impact on the grid in terms of power quality. It was found that the voltage variations due to fast-chargers terminal remain much below the EN50160 standard limit values i.e., ±10%. The obtained maximum Total Harmonic Voltage Distortion (THDv) value is 2.7%, with an average value of 1.3%, which is below the limit value of 8%, as per the standard EN 50160. Similarly, the individual harmonic currents were measured. The maximum value of total harmonic current distortion (THDI) is around 25%, with an average value of 3% only. As the average value of THDI is quite low, the harmonic current pollution is not a big concern for the installation at this time.

Suggested Citation

  • Mohammed Al-Saadi & Sharmistha Bhattacharyya & Pierre Van Tichelen & Manuel Mathes & Johannes Käsgen & Joeri Van Mierlo & Maitane Berecibar, 2022. "Impact on the Power Grid Caused via Ultra-Fast Charging Technologies of the Electric Buses Fleet," Energies, MDPI, vol. 15(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1424-:d:750273
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1424/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matthias Rogge & Sebastian Wollny & Dirk Uwe Sauer, 2015. "Fast Charging Battery Buses for the Electrification of Urban Public Transport—A Feasibility Study Focusing on Charging Infrastructure and Energy Storage Requirements," Energies, MDPI, vol. 8(5), pages 1-20, May.
    2. Krzysztof Zagrajek & Józef Paska & Mariusz Kłos & Karol Pawlak & Piotr Marchel & Magdalena Bartecka & Łukasz Michalski & Paweł Terlikowski, 2020. "Impact of Electric Bus Charging on Distribution Substation and Local Grid in Warsaw," Energies, MDPI, vol. 13(5), pages 1-13, March.
    3. Shahid Hussain & Ki-Beom Lee & Mohamed A. Ahmed & Barry Hayes & Young-Chon Kim, 2020. "Two-Stage Fuzzy Logic Inference Algorithm for Maximizing the Quality of Performance under the Operational Constraints of Power Grid in Electric Vehicle Parking Lots," Energies, MDPI, vol. 13(18), pages 1-31, September.
    4. De Filippo, Giovanni & Marano, Vincenzo & Sioshansi, Ramteen, 2014. "Simulation of an electric transportation system at The Ohio State University," Applied Energy, Elsevier, vol. 113(C), pages 1686-1691.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    2. Oscar Mauricio Hernández-Gómez & João Paulo Abreu Vieira & Jonathan Muñoz Tabora & Luiz Eduardo Sales e Silva, 2024. "Mitigating Voltage Drop and Excessive Step-Voltage Regulator Tap Operation in Distribution Networks Due to Electric Vehicle Fast Charging," Energies, MDPI, vol. 17(17), pages 1-20, September.
    3. Manuel Mathes & Matthias Schmidt & Johannes Käsgen & Bruno Fievet & Pierre Van Tichelen & Maitane Berecibar & Mohammed Al-Saadi, 2022. "Heavy-Duty Battery Electric Buses’ Integration in Cities Based on Superfast Charging Technologies: Impact on the Urban Life," Sustainability, MDPI, vol. 14(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Purnell, K. & Bruce, A.G. & MacGill, I., 2022. "Impacts of electrifying public transit on the electricity grid, from regional to state level analysis," Applied Energy, Elsevier, vol. 307(C).
    2. Tolga Ercan & Mehdi Noori & Yang Zhao & Omer Tatari, 2016. "On the Front Lines of a Sustainable Transportation Fleet: Applications of Vehicle-to-Grid Technology for Transit and School Buses," Energies, MDPI, vol. 9(4), pages 1-22, March.
    3. Basma, Hussein & Mansour, Charbel & Haddad, Marc & Nemer, Maroun & Stabat, Pascal, 2022. "Energy consumption and battery sizing for different types of electric bus service," Energy, Elsevier, vol. 239(PE).
    4. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Gallet, Marc & Massier, Tobias & Hamacher, Thomas, 2018. "Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks," Applied Energy, Elsevier, vol. 230(C), pages 344-356.
    6. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    7. Wei, Ran & Liu, Xiaoyue & Ou, Yi & Kiavash Fayyaz, S., 2018. "Optimizing the spatio-temporal deployment of battery electric bus system," Journal of Transport Geography, Elsevier, vol. 68(C), pages 160-168.
    8. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    9. Piotr Hołyszko & Dariusz Zieliński & Andrzej Niewczas & Joanna Rymarz & Ewa Dębicka, 2021. "Ensuring the Continuity of Power Supply to the On-Board Auxiliary Devices of the Trolleybus through the Recuperation of Kinetic Energy," Energies, MDPI, vol. 14(16), pages 1-18, August.
    10. Christoph Streuling & Johannes Pagenkopf & Moritz Schenker & Kim Lakeit, 2021. "Techno-Economic Assessment of Battery Electric Trains and Recharging Infrastructure Alternatives Integrating Adjacent Renewable Energy Sources," Sustainability, MDPI, vol. 13(15), pages 1-30, July.
    11. He, Yi & Liu, Zhaocai & Song, Ziqi, 2020. "Optimal charging scheduling and management for a fast-charging battery electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    12. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    13. Yuki Matsuda & Yuto Yamazaki & Hiromu Oki & Yasuhiro Takeda & Daishi Sagawa & Kenji Tanaka, 2021. "Demonstration of Blockchain Based Peer to Peer Energy Trading System with Real-Life Used PHEV and HEMS Charge Control," Energies, MDPI, vol. 14(22), pages 1-12, November.
    14. Wenz, Klaus-Peter & Serrano-Guerrero, Xavier & Barragán-Escandón, Antonio & González, L.G. & Clairand, Jean-Michel, 2021. "Route prioritization of urban public transportation from conventional to electric buses: A new methodology and a study of case in an intermediate city of Ecuador," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Paweł Piotrowski & Dariusz Baczyński & Marcin Kopyt, 2022. "Medium-Term Forecasts of Load Profiles in Polish Power System including E-Mobility Development," Energies, MDPI, vol. 15(15), pages 1-27, August.
    16. Hussain, Shahid & Irshad, Reyazur Rashid & Pallonetto, Fabiano & Hussain, Ihtisham & Hussain, Zakir & Tahir, Muhammad & Abimannan, Satheesh & Shukla, Saurabh & Yousif, Adil & Kim, Yun-Su & El-Sayed, H, 2023. "Hybrid coordination scheme based on fuzzy inference mechanism for residential charging of electric vehicles," Applied Energy, Elsevier, vol. 352(C).
    17. Basma, Hussein & Haddad, Marc & Mansour, Charbel & Nemer, Maroun & Stabat, Pascal, 2022. "Evaluation of the techno-economic performance of battery electric buses: Case study of a bus line in paris," Research in Transportation Economics, Elsevier, vol. 95(C).
    18. Armando Cartenì & Ilaria Henke & Clorinda Molitierno & Luigi Di Francesco, 2020. "Strong Sustainability in Public Transport Policies: An e-Mobility Bus Fleet Application in Sorrento Peninsula (Italy)," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    19. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    20. Mohammad Shadnam Zarbil & Abolfazl Vahedi & Hossein Azizi Moghaddam & Pavel Aleksandrovich Khlyupin, 2022. "Design and Sizing of Electric Bus Flash Charger Based on a Flywheel Energy Storage System: A Case Study," Energies, MDPI, vol. 15(21), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1424-:d:750273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.