IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4777-d795156.html
   My bibliography  Save this article

Heavy-Duty Battery Electric Buses’ Integration in Cities Based on Superfast Charging Technologies: Impact on the Urban Life

Author

Listed:
  • Manuel Mathes

    (Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF, Bartningstraße 47, 64289 Darmstadt, Germany)

  • Matthias Schmidt

    (Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF, Bartningstraße 47, 64289 Darmstadt, Germany)

  • Johannes Käsgen

    (Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF, Bartningstraße 47, 64289 Darmstadt, Germany)

  • Bruno Fievet

    (Belgisch Laboratorium, Van De Elektriciteitsindustrie Laborelec CVBA, 1630 Linkebeek, Belgium)

  • Pierre Van Tichelen

    (Belgisch Laboratorium, Van De Elektriciteitsindustrie Laborelec CVBA, 1630 Linkebeek, Belgium)

  • Maitane Berecibar

    (MOBI Research Group, Vrij Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium)

  • Mohammed Al-Saadi

    (MOBI Research Group, Vrij Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
    Flanders Make, 3001 Heverlee, Belgium
    The technical manager of the ASSURED project.)

Abstract

As part of this work, several Battery Electric Buses (BEBs) of 9 m, 12 m, and 18 m lengths and superfast chargers based on a pantograph of up to 600 kW were developed and demonstrated in selected European cities. In Osnabrück (OSN), Germany, superfast charging technologies based on BEBs were demonstrated, and numerous measurement campaigns were conducted. Within the scope of this work, two measurement campaigns are presented, which are related to the impact of BEBs on the urban life, i.e., people’s safety, environment, and users’ comfort. People’s safety was investigated in terms of the electromagnetic emissions emanating from two superfast chargers of 350 kW and 300 kW, as such high charging power during the charging process could be a risk to people’s health and electronics inside and outside the bus. The results showed that the magnetic and electrical emissions are far below the safety standard limits. This confirms that the developed vehicles and chargers in the ASSURED project operate under safe conditions for people in the vicinity of the charging station. Environmental impact and users’ comfort were studied in terms of electric motor noises (compared to diesel engines), power electronic devices and their cooling, contact noises of the pantograph, and vibration inside the BEBs compared to diesel buses. It was found that, in most cases, the outside noise emission of BEBs are significantly lower than the noise emissions emitted by diesel buses. Considering the inside noise emissions in the passenger’s section, all BEBs showed lower Sound Pressure Levels (SPLs) in comparison to the diesel busses. As a second part of the ride comfort, vibrations inside BEBs are on the same level as some diesel buses but are mostly significantly lower. All charging processes (pantograph operation and charging process) have a slight noise emission, with 64.6 dB(A) and 52.3 dB(A), respectively, when comparing the engine noise at the departure of the tested diesel buses with 70.8 dB(A) to 80.4 dB(A). Overall, a reduction in noise emissions and an improvement in the ride comfort were observed for the BEBs compared to diesel busses. The objective of this brief study is to provide bus operators, decision-makers, urban planners, and authorities with an overview of the benefits of BEBs for cities and to help them understand the various infrastructural impacts on urban areas and improve the quality of services.

Suggested Citation

  • Manuel Mathes & Matthias Schmidt & Johannes Käsgen & Bruno Fievet & Pierre Van Tichelen & Maitane Berecibar & Mohammed Al-Saadi, 2022. "Heavy-Duty Battery Electric Buses’ Integration in Cities Based on Superfast Charging Technologies: Impact on the Urban Life," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4777-:d:795156
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed Al-Saadi & Sharmistha Bhattacharyya & Pierre Van Tichelen & Manuel Mathes & Johannes Käsgen & Joeri Van Mierlo & Maitane Berecibar, 2022. "Impact on the Power Grid Caused via Ultra-Fast Charging Technologies of the Electric Buses Fleet," Energies, MDPI, vol. 15(4), pages 1-16, February.
    2. Mohammed Al-Saadi & Bartosz Patkowski & Maciej Zaremba & Agnieszka Karwat & Mateusz Pol & Łukasz Chełchowski & Joeri Van Mierlo & Maitane Berecibar, 2021. "Slow and Fast Charging Solutions for Li-Ion Batteries of Electric Heavy-Duty Vehicles with Fleet Management Strategies," Sustainability, MDPI, vol. 13(19), pages 1-35, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    2. Armel Asongu Nkembi & Paolo Cova & Emilio Sacchi & Emanuele Coraggioso & Nicola Delmonte, 2023. "A Comprehensive Review of Power Converters for E-Mobility," Energies, MDPI, vol. 16(4), pages 1-28, February.
    3. Teresa Nogueira & José Magano & Ezequiel Sousa & Gustavo R. Alves, 2021. "The Impacts of Battery Electric Vehicles on the Power Grid: A Monte Carlo Method Approach," Energies, MDPI, vol. 14(23), pages 1-18, December.
    4. Oscar Mauricio Hernández-Gómez & João Paulo Abreu Vieira & Jonathan Muñoz Tabora & Luiz Eduardo Sales e Silva, 2024. "Mitigating Voltage Drop and Excessive Step-Voltage Regulator Tap Operation in Distribution Networks Due to Electric Vehicle Fast Charging," Energies, MDPI, vol. 17(17), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4777-:d:795156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.