IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8327-d1151429.html
   My bibliography  Save this article

Numerical Study of the Internal Fluid Dynamics of Draft Tube in Seawater Pumped Storage Hydropower Plant

Author

Listed:
  • Jianyong Hu

    (School of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
    Engineering Research Center of Digital Twin Basin of Zhejiang Province, Hangzhou 310018, China)

  • Qingbo Wang

    (School of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
    College of Energy and Power Engineering, North China University of Water Resources and Hydropower, Zhengzhou 450045, China)

  • Zhenzhu Meng

    (Engineering Research Center of Digital Twin Basin of Zhejiang Province, Hangzhou 310018, China
    School of Water Conservancy & Environment Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

  • Hongge Song

    (School of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
    College of Energy and Power Engineering, North China University of Water Resources and Hydropower, Zhengzhou 450045, China)

  • Bowen Chen

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430000, China)

  • Hui Shen

    (School of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
    School of Water Resources and Hydropower, Hebei University of Engineering, Handan 056038, China)

Abstract

Pumped storage hydropower plants are renewable energy systems that are effective in saving energy and solving electricity peak-on shortage. Seawater pumped storage hydropower plants are a novel type of pumped storage hydropower plant specifically supplying electric power for ocean islands with the support of solar energy and wind energy. Compared with traditional pumped storage hydropower plants that are constructed on the mainland, seawater pumped storage hydropower plants should take the influence of the complex marine environment, such as extreme waves and winds, into consideration. Taking the characteristics of waves near islands in the East China Sea as an example, we explored the transient hydraulic characteristics in the draft tube of a pump turbine under wave disturbance using a sliding grid interface and the detached eddy simulation (DES) turbulence model. By analyzing the characteristics of unsteady flow in the draft tube, the vortex characteristics under the Q criterion, the frequency characteristics of the pressure pulsation, the evolution law of the internal fluid, and the propagation law of the pressure pulsation were explored. For the situation without wave disturbance, an obvious eccentric vortex in the straight cone section of the draft tube was observed in the case where the opening of the guide vane was small. With the increase in the opening of the guide vane, the eccentric vortex gradually dissipated. For the situation with wave disturbance, the main frequency of the draft tube equaled the frequency of the wave disturbance, the maximum pressure pulsation at the selected monitoring points increased 5 to 15 times, and the superposition of the wave pressure pulsation signals and the draft tube pressure pulsation produced more low-frequency, high-amplitude pressure pulsation signals. Even though the pressure pulsation frequency spectrum varied a lot, the frequency domain of the pressure pulsation without wave disturbance still existed. In addition, the wave disturbance merely varied with the pressure of the draft tube. The influence of wave disturbance on the pressure distribution in the draft tube was relatively small. The results can provide a reference for the operation of seawater pumped storage hydropower plants.

Suggested Citation

  • Jianyong Hu & Qingbo Wang & Zhenzhu Meng & Hongge Song & Bowen Chen & Hui Shen, 2023. "Numerical Study of the Internal Fluid Dynamics of Draft Tube in Seawater Pumped Storage Hydropower Plant," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8327-:d:1151429
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8327/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8327/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zijie Wang & Baoshan Zhu & Xuhe Wang & Daqing Qin, 2017. "Pressure Fluctuations in the S-Shaped Region of a Reversible Pump-Turbine," Energies, MDPI, vol. 10(1), pages 1-13, January.
    2. Tao Guo & Lihui Xu & Wenquan Wang, 2021. "Influence of Upstream Disturbances on the Vortex Structure of Francis Turbine Based on the Criteria of Identification of Various Vortexes," Energies, MDPI, vol. 14(22), pages 1-21, November.
    3. Jing Yang & Yue Lv & Dianhai Liu & Zhengwei Wang, 2021. "Pressure Analysis in the Draft Tube of a Pump-Turbine under Steady and Transient Conditions," Energies, MDPI, vol. 14(16), pages 1-13, August.
    4. Lu, Jie & Qian, Zhongdong & Lee, Young-Ho, 2021. "Numerical investigation of unsteady characteristics of a pump turbine under runaway condition," Renewable Energy, Elsevier, vol. 169(C), pages 905-924.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhenmu & Jiang, Zhenyu & Chen, Shuai & Zhang, Wenwu & Zhu, Baoshan, 2023. "Experimental and numerical study on flow instability of pump-turbine under runaway conditions," Renewable Energy, Elsevier, vol. 210(C), pages 335-345.
    2. Li, Wei & Long, Yu & Ji, Leilei & Li, Haoming & Li, Shuo & Chen, Yunfei & Yang, Qiaoyue, 2024. "Effect of circumferential spokes on the rotating stall flow field of mixed-flow pump," Energy, Elsevier, vol. 290(C).
    3. Sun, Longgang & Xu, Hongyang & Li, Chenxi & Guo, Pengcheng & Xu, Zhuofei, 2024. "Unsteady assessment and alleviation of inter-blade vortex in Francis turbine," Applied Energy, Elsevier, vol. 358(C).
    4. Jiehao Duan & Changjun Li & Jin Jin, 2022. "Establishment and Solution of Four Variable Water Hammer Mathematical Model for Conveying Pipe," Energies, MDPI, vol. 15(4), pages 1-21, February.
    5. Ma, Zhe & Zhu, Baoshan, 2020. "Pressure fluctuations in vaneless space of pump-turbines with large blade lean runners in the S- shaped region," Renewable Energy, Elsevier, vol. 153(C), pages 1283-1295.
    6. K., Subramanya & Chelliah, Thanga Raj, 2023. "Capability of synchronous and asynchronous hydropower generating systems: A comprehensive study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Linhai Liu & Baoshan Zhu & Li Bai & Xiaobing Liu & Yue Zhao, 2017. "Parametric Design of an Ultrahigh-Head Pump-Turbine Runner Based on Multiobjective Optimization," Energies, MDPI, vol. 10(8), pages 1-16, August.
    8. Kim, Seung-Jun & Yang, Hyeon-Mo & Park, Jungwan & Kim, Jin-Hyuk, 2022. "Investigation of internal flow characteristics by a Thoma number in the turbine mode of a Pump–Turbine model under high flow rate," Renewable Energy, Elsevier, vol. 199(C), pages 445-461.
    9. Jianzhong Zhou & Yanhe Xu & Yang Zheng & Yuncheng Zhang, 2017. "Optimization of Guide Vane Closing Schemes of Pumped Storage Hydro Unit Using an Enhanced Multi-Objective Gravitational Search Algorithm," Energies, MDPI, vol. 10(7), pages 1-23, July.
    10. Zheming Tong & Zhongqin Yang & Qing Huang & Qiang Yao, 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition," Energies, MDPI, vol. 15(5), pages 1-17, March.
    11. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    12. Kan, Kan & Xu, Zhe & Chen, Huixiang & Xu, Hui & Zheng, Yuan & Zhou, Daqing & Muhirwa, Alexis & Maxime, Binama, 2022. "Energy loss mechanisms of transition from pump mode to turbine mode of an axial-flow pump under bidirectional conditions," Energy, Elsevier, vol. 257(C).
    13. Zhang, Yuning & Zheng, Xianghao & Li, Jinwei & Du, Xiaoze, 2019. "Experimental study on the vibrational performance and its physical origins of a prototype reversible pump turbine in the pumped hydro energy storage power station," Renewable Energy, Elsevier, vol. 130(C), pages 667-676.
    14. Jiawei Ye & Wei Zeng & Zhigao Zhao & Jiebin Yang & Jiandong Yang, 2020. "Optimization of Pump Turbine Closing Operation to Minimize Water Hammer and Pulsating Pressures During Load Rejection," Energies, MDPI, vol. 13(4), pages 1-18, February.
    15. Yan, Xiaotong & Kan, Kan & Zheng, Yuan & Xu, Zhe & Rossi, Mosè & Xu, Lianchen & Chen, Huixiang, 2024. "The vortex dynamics characteristics in a pump-turbine: A rigid vorticity analysis while varying guide vane openings in turbine mode," Energy, Elsevier, vol. 289(C).
    16. Jianzhong Zhou & Zhigao Zhao & Chu Zhang & Chaoshun Li & Yanhe Xu, 2017. "A Real-Time Accurate Model and Its Predictive Fuzzy PID Controller for Pumped Storage Unit via Error Compensation," Energies, MDPI, vol. 11(1), pages 1-24, December.
    17. Zhou, Xing & Wu, Hegao & Cheng, Li & Huang, Quanshui & Shi, Changzheng, 2023. "A new draft tube shape optimisation methodology of introducing inclined conical diffuser in hydraulic turbine," Energy, Elsevier, vol. 265(C).
    18. Zhang, Wenwu & Chen, Zhenmu & Zhu, Baoshan & Zhang, Fei, 2020. "Pressure fluctuation and flow instability in S-shaped region of a reversible pump-turbine," Renewable Energy, Elsevier, vol. 154(C), pages 826-840.
    19. Kim, Seung-Jun & Suh, Jun-Won & Yang, Hyeon-Mo & Park, Jungwan & Kim, Jin-Hyuk, 2022. "Internal flow phenomena of a Pump–Turbine model in turbine mode with different Thoma numbers," Renewable Energy, Elsevier, vol. 184(C), pages 510-525.
    20. Lihui, Xu & Tao, Guo & Wenquan, Wang, 2022. "Effects of Vortex Structure on Hydraulic Loss in a Low Head Francis Turbine under Overall Operating Conditions Base on Entropy Production Method," Renewable Energy, Elsevier, vol. 198(C), pages 367-379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8327-:d:1151429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.